Dr Julia Goedecke
deutsch
I am interested in the area of categorical algebra. My PhD thesis is on homology in semi-abelian categories, and after that I also investigated more general settings such as relative Mal'tsev categories and relative Goursat categories. I also worked on higher extensions and use categorical Galois theory. Below are links to my PhD thesis and my papers.
- The fundamental group functor as a Kan extension
with Tomas Everaert and Tim Van der Linden,
Cah. Topol. et Géom. Différ. Catég. LIV (2013), 184-210.
Preprint on arXiv. - Relative Mal'tsev categories
with Tomas Everaert, Tamar Janelidze-Gray and Tim Van der Linden,
TAC 28 (2013), No. 29, 1002-1021.
Preprint in Séminaire de Mathématique No. 383, Université catholique de Louvain, pdf. - Homology in relative semi-abelian categories
Applied Categorical Structures 21 (2012), No. 6, 523-543 .
Preprint pdf. - Resolutions, Higher Extensions and the Relative Mal'tsev Axiom
with Tomas Everaert and Tim Van der Linden,
J. Algebra 371 (2012), 132-155.
Latest Preprint on arXiv.
First Preprint (including one more section) at Pré-Publicações DMUC 10-49 (2010), 1-44. - Relative Goursat Categories
with Tamar Janelidze,
J. Pure Appl. Alg. 216 (2012), 1726-1733.
Final pdf (copyright Journal of Pure and Applied Algebra). - On Satellites in Semi-Abelian Categories: Homology without Projectives
with Tim Van der Linden, Math. Proc. Cambridge Philos. Soc. 147 (2009), No. 3, 629-657.
Final pdf (copyright Cambridge Philosophical Society). - A Comparison Theorem for Simplicial Resolutions
with Tim Van der Linden,
Journal of Homotopy and Related Struct., 2 (2007), No. 1, 109-126. - Three Viewpoints on Semi-Abelian Homology
PhD Thesis, supervisor Prof. Peter Johnstone (2009).
Available on DSpace, University of Cambridge.