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If it is 3 o’clock now, what time is it in 10 hours?
If it is Thursday now, what day is it in 9 days?
If it is summer now, what season will it be in 100 seasons?
If it is midday now, will it be light or dark in 539 hours?
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Calculating with remainders

Writing the above answers mathematically

3 + 10 ≡ 1 (mod 12) So 1 o’clock.
4 + 9 ≡ 6 (mod 7) So Saturday.
2 + 100 ≡ 2 (mod 4) So summer again.
12 + 539 ≡ 12 + 480 + 59 ≡ 12 + 11 ≡ 23 (mod 24)
So it will be 23h, or 11pm, so dark.
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Modular Arithmetic

Formally
For whole numbers x , y and n we write

x ≡ y (mod n) ⇐⇒ (x−y) = kn for some whole number k .

Two numbers are congruent modulo n exactly when their
difference is divisible by n.

Dr Julia Goedecke (Newnham) Remainders of Security 06/07/2017 4 / 17



Modular Arithmetic
Cryptography

Remainders
Multiplication

Modular Arithmetic

Formally
For whole numbers x , y and n we write

x ≡ y (mod n) ⇐⇒ (x−y) = kn for some whole number k .

Two numbers are congruent modulo n exactly when their
difference is divisible by n.

Dr Julia Goedecke (Newnham) Remainders of Security 06/07/2017 4 / 17



Modular Arithmetic
Cryptography

Remainders
Multiplication

Multiplication mod n

Multiplication modulo 5

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2
3 0 3
4 0 4

Multiplication modulo 6

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2
3 0 3
4 0 4
5 0 5
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0 0 0 0 0 0 0
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Inverse
We say y is an inverse of x mod n if xy ≡ 1 (mod n).
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Inverses for primes

Lemma
If p is prime, then every non-zero number mod p has an inverse
mod p.

Airlifted in: Bezout’s Identity
If a,b coprime integers, then there are integers x , y such that

ax + by = 1.

Proof

p prime, a 6≡ 0 (mod p)⇒ p,a coprime.
So by Bezout, we have px + ay = 1 for some x , y .
⇒ ay ≡ 1 (mod p).
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A little exercise

For n and a coprime, consider the numbers
a,2a,3a, . . . , (n − 1)a mod n.

Is it possible that any of these is 0 (mod n)?

No! They are
all non-zero mod n.
Can any two be the same mod n?

No! They must all be
different.

Which numbers mod n can they be?

Since all different,
they are 1,2, . . . , (n − 1) in some order.

Calculations and thoughts
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Fermat’s Little Theorem

Theorem (Little Fermat)
If p prime and a not a multiple of p, then

ap−1 ≡ 1 (mod p)

Proof
Consider product of a,2a,3a, . . . , (p − 1)a in two ways:

Same numbers as 1,2, . . . , (p − 1), so have same product.
Or take all factors of a to the front.
So 1 · 2 · · · (p − 1) ≡ ap−1 · 1 · 2 · · · (p − 1) (mod p).
But each of 1,2, . . . ,p − 1 has an inverse mod p!
Multiply both sides by all these inverses, to get:
1 ≡ ap−1 (mod p).
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Symmetric Key Cryptography
Public Key Cryptography

Cryptography

write secret messages
store data securely
secure internet payment
secret radio transmission in war
...
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Symmetric Key Cryptography
Public Key Cryptography

Caesar Cipher

How does it work?
Our friend moves to Australia, we want
to send them a secret letter.
We can use different “shifts”: our key.
We write secret sentence using key.
How will recipient know key?
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Link to modular arithmetic

What’s it got to do with what we did before?

Substitute numbers for the letters: A = 1, B = 2, C = 3 etc.
up to Z = 26

Pick a number as your key: we’ll call it ϕ.
For each letter (now a number α) of your message,
calculate

β ≡ α+ ϕ (mod 26).

Transmit β (a string of such βs, one each for each letter of
your message).
To decipher, recipient needs to calculate

β − ϕ (mod 26)

to get your original message α back.
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For each letter (now a number α) of your message,
calculate
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Transmit β (a string of such βs, one each for each letter of
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To decipher, recipient needs to calculate

β − ϕ (mod 26)
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Symmetric Key Cryptography
Public Key Cryptography

Symmetric Key Cryptography

Problems
Alice and Bob want secret
communication.
Both need same key.
Problem: safe key exchange.
Doesn’t work for internet shopping.
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Public Key Cryptography

Padlock metaphor
Bob has padlock and matching key.

Alice can get open padlock from internet.

Alice padlocks the message for Bob.

Message now safe to send.

Only Bob has the key to open it.
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Cryptography

Symmetric Key Cryptography
Public Key Cryptography

RSA Algorithm

How it works
Take two large primes p and q.

Calculate n = pq and ϕ = (p − 1)(q − 1).
Choose public key e ≤ ϕ which has no factors in common
with ϕ.
Calculate private key d which satisfies de ≡ 1 (mod ϕ).
Throw away p, q and ϕ.
Encrypt message x as y ≡ xe (mod n).
Decrypt ciphertext y as x ≡ yd (mod n).
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RSA Algorithm

Does it really work?

Can we get the correct message back? Is (xe)d ≡ x (mod n)?

Airlifted in

Enough to show (xe)d ≡ x (mod p) and (xe)d ≡ x (mod q).

Proof

But Little Fermat⇒ x (p−1) ≡ 1 (mod p) as long as x 6≡ 0
(mod p).
So
Hurray!
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RSA: Why is it safe?

Multiplying vs. Factorising

Calculate 23 · 37.

Find the factors of 943.
Which was faster/easier?
To decipher, need to know d , for which we need ϕ, for
which we need p and q: hard to get.
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Modular Arithmetic
Cryptography

I hope you had some fun!
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