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Preamble

The Notes

These notes are not verbatim what I will write in the lectures, but the content is exactly the same.
(Every year some people complain about this, but this is why they are called my “lecture notes”.
Many other students appreciate that it is this way.) The main difference is that they have more
complete sentences, and they may have some comments that I only said in lectures. I might try
to make such comments green, but it may not be consistent.

If you find any errors and typos in the notes, please do let me know (email address is on www.julia-
goedecke.de), even if they look trivial.

The notes are partly based on the book Elementary Linear Algebra by Anton and Rorres.

How to use the notes

These notes represent the material covered in the corresponding course in Leicester. They were
accompanied by video lectures and live lectures with discussions, which are not freely available.
The following comments refer back to these, but can be adapted to be more general advice to
students.

Possible uses:

¢ Use them for revision or when doing Workbook questions.

¢ Look back at some details you didn’t quite understand in lectures.

o For automatic searching of a term/concept.

o Many more ways: it is up to you to find out how they are most useful for you.

What to do during lecture videos

¢ In maths lectures, you are not expected to understand everything in real time. You will
have to go over some bits again, do exercises, work on the material to understand it fully.

¢ Uni maths lectures will have more mathematical language and symbols than you might
be used to from school. You will slowly get used to this. If you have a question on some
particular notation that is not answered in lectures, do ask someone.

o Make a note if there is something you need to come back to later.

Try to visualise the mathematical concepts.

o If you think of a link to a topic you’ve seen before, make a quick note and explore it more
after.

<

Some comments on note-taking

o Many students (including myself) find that taking down notes in lectures is actually the
best way to concentrate and to learn something. If this applies to you, set these notes
aside for a while and use them just to fill in gaps later.

o If you do take notes, make sure you also listen to what I say during the lecture (video
or live). With videos, you can pause them or play on slower speed if you find you can’t
keep up.

o If you can’t concentrate on listening and taking notes at the same time (like my brother),
then just use these notes instead and concentrate on listening.
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CHAPTER 0. PREAMBLE EXERCISES

o DO NOT try to read the notes (for the first time) while I'm lecturing the same material:
you will most likely not hear what I say and not fully take in either.
So my advice is: use one of these three methods:
o Take notes in lectures. (And listen as well.)
¢ Read ahead, or pause the video and read in between, and just listen in lectures knowing
you've already seen it in the notes.
Listen in lectures hoping/trusting that it will all be written in the notes.

<

What to do in live lectures

<&

Participate in all activities, e.g. true/false questions or multiple choice questions.
Think actively about the material, as prompted by the lecture.
Ask questions to help you understand the material.

S 0

What to do between/after lectures

To help your understanding of the material:

o Do the exercises suggested.

o Try out statements of propositions and their proofs on an example after the lecture
(video): this can help you understand it.

o Try to make your own examples for concepts.

o If you’ve tried lecture notes, friends, and exercises and still need help, use the lecturer’s
office hours or email them: they are happy to help you as well.

o Suggestion from older students: make your own bank of (new for you) mathematical
symbols with their description. You will learn them better if you make this yourself than
use someone else’s. You can add to it through your university maths journey.

Colours

Text in green is a more informal comment, which often is meant to aid your understanding.
Some comments are in purple. I may not manage to be terribly consistent between green and
purple, but purple comments might not be so informal.

Text in red is very important.

Definitions and results are underlayed in yellow.

I have also put a red border round especially important results.

Exercises

Sometimes in the notes I will say “exercise”. The main reason to have these is for you to be able
to check your understanding by doing a fairly straight-forward exercise yourself. As maths is not
a spectator sport, it is important you keep doing exercises and don’t just read notes passively. It
is helpful for you to try exercises even outside the Workbook Questions I set you to hand in, so
you get enough practice. You will also find Numbas questions which you can use for practice: they
will give you immediate feedback, and many of them are randomised, which means you can try
the same question again with different numbers, to get as much practice as you personally need.
Another source of such exercises are situations in a proof where it says “similarly”. This means
you can try out that bit yourself, and it will be very close to what was done before.
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Introduction

What is Linear Algebra about?
The ingredients are:

1 5 o
¢ vectors, e.g. (2) or | 5]or : o |oruo, ..

4 T,

o scalars, i.e. real numbers, e.g. 0.5, v/2, A, ...

. 1 0 3 5 2
¢ matrices, e.g. or -
0 1 6 1 2

© some other concepts we will see later.
Some of the most important things we will do with these ingredients are:
¢ linear combinations:

- vector addition e.g. 3 + 2 = 5
5 1 6

1 3
scalar multiplicatione.g. 3- |3 =] 9
5 15
Combine the two to get a linear combination:
1 -1 1
3-13|+5-[ 2 |-v2-|o
5 6 0

Linear combinations will play a very imortant role throughout the course.
© Matrices acting on vectors, e.g.

b 1)6)- () -0)

We will learn how this works in the course.
What do vectors stand for/represent?

¢ An arrow in two or three dimensions.
o Experimental data: n different measurements.
¢ Logistics: e.g. give locations of trucks in different warehouses.
o Images: hugh, saturation and brightness as well as position of a pixel.
o lots more.
What do matrices mean or stand for/represent?
There are many options, depending on the situation.

¢ a function sending a vector to matrix times vector

o a system of linear equations

o data (lots of different options, see above)

S
What does “linear” mean?
Intuitively, it has to do with “lines”, so no quadratics, cubics, etc. Just a scalar times a variable,
or a scalar times a vector.
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CHAPTER 0. INTRODUCTION

More directly: linear means we can add vectors or variables, and multiply them by a scalar. But
we cannot do any squaring, roots, sin, cos, log, exponentials, ...
We will see that even this restriction gives a rich area of maths to study.

Why is Linear Algebra useful/important?
It is used in many many areas of maths and applications.
o Approximating functions by lines (via tangents) gives a linear situation. This is more
useful than one might think.
Used in solving differential equations.
Can be used in Probability /Statistics.
Used in Machine Learning.
Used in a variety of numerical methods.
Used in coordinate geometry, etc.
many many more

SO0 00
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CHAPTER 1

Vectors and Matrices

A. Vectors in two and three dimensions

Since we said vectors are one of the main ingredients of Linear Algebra, let’s start with vectors in
the plane.

Definition 1.1: A two-dimensional vector has two entries written vertically, with both
entries being real numbers. We also call this a column vector.

e (). ). (). (1)

You can think of this vector as describing a point in the plane, or a direction vector starting at
the origin to that point in the plane.

x x
We write a general such vector as ( ) or as ( 1). Varying over all possible combinations of
Y T2

real numbers = and y, we get the whole plane, which we write as R? (denoting two entries of real
numbers).
Given two such vectors, we can add them.

Geometrically, you add two vectors by putting one at the end of the other and then joining the
origin to the second endpoint, as in the picture above.

But it is easy to see from the next two images that this corresponds exactly to adding the z-
components and the y-components separately:
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CHAPTER 1. VECTORS AND MATRICES VECTORS IN TWO AND THREE DIMENSIONS

()

B () - (o) = () = ()+(20) - () - (230)

It is also clear from this algebraic way of adding them that the order does not matter:
1 5 5 1
- = +
(o) (o) = () < )

Definition 1.2: So in general, we define

T1 i Y\ _ T+
T2 Y2 Ta + Y2

This is called componentwise addition, because we are adding each component or entry of
the vector separately.

We can also scale a vector by a real number: leaving the direction the same and only changing the
length of the vector.

2.5

1.5 -1

0.5

-6 =)0

Again we can calculate this algebraically:

N
L
/‘_\
o™
Nl

N
oo

wl N
|
_ W
ot
~_
|
VR
I o
—
~—
o
=
(o}
[SCRITSN
I
_ W
ot
~___
\
/I\
M»Jk
~_

x1> by a real number A as

Definition 1.3: We define scalar multiplication of a vector (
x2

(2)-0n)

We take the scalar and multiply each entry of the vector by that scalar.
The symbol X is called lambda, it is a greek letter we often use for scalars.
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CHAPTER 1. VECTORS AND MATRICES VECTORS IN TWO AND THREE DIMENSIONS
3 2 3 — 3
Exercise 1.4: Calculate the following: ¢ 0 - . o + o3 V3 +6- 2
X9 1 1 ™ T

Now we can do the same thing for vectors in three-dimensional space.

Definition 1.5: A three-dimensional vector has three entries written vertically, with all
entries being real numbers. The collection of all possible three-dimensional vectors is called
R3, which is three-dimensional space.

1 4 —T
For example | 0|, | -2 |, | 6.4
0 0 -3

We can add such vectors just as we added two-dimensional vectors.

v+

A

It is slightly harder to draw in three dimensions, so why don’t you go to this GeoGebra picture and
rotate it and play around with it to get a feel for it. https://www.geogebra.org/3d/xnttqnrc

Definition 1.6: For three-dimensional vectors, the componentwise addition is defined as

T1 Y1 T1 + Y1
o |+ |y2|= | 22+ Y2
T3 Y3 T3 + Y3

Scalar multiplication is defined as

T ATy
A T2 | = A xTo
T3 A I3

So they are exactly the same rules as we had for two-dimensional vectors, doing everything com-
ponentwise. The only difference is that we now have three components.

You can see that we have a geometric interpretation and an algebraic way of calculating for these
vectors in two and three dimensions. It is very useful to have both, but we will see soon that
when we get into higher dimensions, it’s harder to visualise geometrically. The topic is called
Linear Algebra because we will focus on the algebraic side of doing things. Do keep the geometric
intuition in two and three dimensions alongside this though. We will now and then fall back on it.

B. Lines and planes in R? and R?
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CHAPTER 1. VECTORS AND MATRICES LINES AND PLANES IN R2 AnD R?

What can we do with this vector addition and scalar multiplication? Let’s have a look at lines and
planes.

Definition 1.7: A line in R? is a set of points of the form

() ()per)

for fixed vectors (Z) and <$1> The scalar A\ varies through all real numbers to give all
T2

a
points on the line. It is sometimes called a parameter. The vector (b) is some point on

x
the line, and the vector ! gives the direction of the line. This direction vector cannot be

T2
Z€ero: e #* 0
: 2 ol

The curly brackets are called set brackets. You can think of a set as a collection of things. The
symbol € means is an element of, and can also be read as “in”. It means the thing on the left is
an element of the set on the right, or is in the set on the right. The vertical line is read as “such
that” or “with” or “where”. So it is “the set of vectors of the form a,b plus lambda times x-one,
x-two with lambda in R” (or where lambda is a real number).

Examples 1.8: o { <0> + A <1>
0 2
1

0
. If the line goes through the origin, we usually leave out the 0 and just write

¢
o

—4
¢ Another line through the origin is { A 5 AeR

AE ]R} is the line through the origin and the point
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CHAPTER 1. VECTORS AND MATRICES LINES AND PLANES IN R2 AnD R?

¢ The same way, with any vector, you get a line through the origin. Some of those are the

1 2
same lines though: {)\ <2> A€ R} = {)\ (4) A€ R}

o We can also have lines that don’t go through the origin, for example

)

—4
through 5 : this is the direction vector, so it is parallel to the line. When A = 1, we

et the point ! + —4 = -3
& b 1 —2) \=1)

e R}. You can see from the image that the line does not go

So here both vector addition and scalar multiplication play together.

It might be a little confusing at first that a vector can mean a point on the plane, as well as the
direction vector from the origin to that point, or the same direction vector moved to somewhere
else. However, if you do the algebra, you will always get the right answer. With some practice you
will know when it is helpful to think of a vector as a point and when to think of it as a direction
vector, and how to switch between the two. But if you're not sure, just do the algebra.

We know that lines are one-dimensional. Intuitively, this means we have only one direction we
can move in (both positively and negatively). It can be helpful to think of it as having “one degree
of freedom”: there is one real number we can choose to determine a point on a line, namely the
parameter .

There is a difference between lines that go through the origin and lines that don’t go through the
origin: if we take a point on a line and multiply it by some scalar, will it still be on the line? Or
if we add two points on a line, will they still be on the line? The answer is yes if the line goes
through the origin, and no if it doesn’t.

Exercise 1.9: o Verify that if k <x1> is any point on the line {)\ <x1>
T2 T2

e R}7 then any

multiple p - k o (1 is read mu) still lies on the same line. And if [ 1) is a second
T2 T2

point on the same line, verify that the sum of the two points is still on the line. Here
x 0
( 1) a (O) is a fixed vector defining the line.

T2
If you find it tricky to get started, first try it in the case where you choose some
actual numbers for ;1 and x5, for example one of the lines through the origin we had
earlier. You can also choose specific numbers for k£ and [, but then see if you can still do
the calculations using the symbols k£ and (.
¢ Verify that for a line which does not go through the origin, adding two points on the line
does not give a point on the line.
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CHAPTER 1. VECTORS AND MATRICES LINES AND PLANES IN R2 AnD R?

What would a line in three-dimensional space look like? We can use the same expression, just
using vectors with three entries everywhere:

a T
bl+ X T2 AeR
C T3

You can see it could be tedious to write everything out separately for two-dimensional vectors and
three-dimensional vectors. So we use some convenient notation that lets us write both at once:

Definition 1.10: Writing u, v for vectors in R? or R3, a line is a set of the form {u + X - v | A € R},
where v # 0.

a
a

So u might be (b

) e R?, or it might be [ b | € R3, or as we’ll see in the next section, even a

c

vector with n entries. And similarly for v. This way we can write expressions that are shorter,
and more general, so we don’t have to write similar expressions for different situations which only
vary in how many entries each vector has.

We tend to use letters u, v, w for vectors, and sometimes also z, y. We tend to use greek letters
A, 1, v (lambda, mu, nu) for scalars, but you can also use k and [. For the real numbers which are
the entries of a vector, we sometimes use x, y, z (then you'd have to know from context whether
x is a real number or a vector, or say it in the sentence), and more often x1, x2, x3 etc. Generally
it needs to be made clear what a letter stands for, these are just guidelines.

Let’s now look at planes.

Definition 1.11: A plane (in R3) is a set of the form
{fu+ v+ pw | A\ peR}

where u is a fixed vector on the plane, and v and w are two direction vectors which are not
zero and do not go in the same direction.

What does “do not go in the same direction” mean here? Let’s look at some examples.

Examples 1.12: ¢ Just as for lines, we can have planes that go through the origin, so
where u = 0. For example, the z, y-plane in three-dimensional space is

1 0
AMO|+p 1A peR
0 0
A
So every vector in this plane has the form | u [, so it is some point in the x, y-plane.
0

¢ Similarly we can have the x, z-plane

AO|+p 0|\ pnelR

0 1
and the y, z-plane
0 0
A If+p]ofApeRrR
0 1
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CHAPTER 1. VECTORS AND MATRICES LINES AND PLANES IN R2 AnD R?

¢ Another plane through the origin is

1 0
AL +p]ofApeR
0 1
1
If you look straight down onto the z, y-plane, you see it just as the line through | 1 |, but
0

if you rotate your viewpoint a bit, you can see that it is a vertical plane in that direction.
You can rotate it in GeoGebra to get different viewpoints: https://www.geogebra.org/

3d/bkxrcnfk
93’. 2
2 Ei:ql
___‘_,_.._,..._#.,.——4-*‘%/' A—kg
%
o Is this also a plane?
1 3
Al +p]3|ApueR
0
1
If we look at the expression algebraically, we can simplify it to (A + 3u) - | 1 |. The two
0
1 3
directions | 1 | and | 3 | are not really different directions, they go in the same direction.
0 0

This does not give us a plane, but only a line.

We can see from the last example that the condition “two direction vectors which do not go in the
same direction” is crucial for getting a plane rather than a line. If one vector goes in the same
direction (this includes with opposite sign) as the other, then it does not reach any other points
than can be reached with just one vector.

Definition 1.13: We say two vectors u, v are parallel if one is a scalar multiple of the other:
if u = Ao for some X € R (or the other way round).

0
The “or the other way round” is to cover the situation where v might be the zero vector | 0 |. The
0

zero vector is parallel to any other vector, because it is 0 times any other vector.
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CHAPTER 1. VECTORS AND MATRICES VECTORSPACE R"

Two vectors which are not parallel are called independent. To have a plane, we need two
independent directions. This is an example of an important concept called linear independence
which we will study much more later on.

Exercise 1.14: Determine which of the following are planes. For each plane, also say whether it
goes through the origin or not. (You can use the tick boxes given.) CAREFUL: while we said that
if the plane (or line) goes through the origin, we don’t use the fixed first vector (the one that does
not have a parameter in front of it), the following planes may not be written in the most efficient

0
way, so you have to check explicitely whether they go through the origin | 0 | or not.
0
8
a) {)\ Ol+p|2|ApeR
0
1 1 0
b) 1T1+A|2|+p|4|XpeRrR
1 0 2
3 1 —2
c) { Tf+A]0f+p] 0 |[ApeR
1 3 —6
1 3 1
d) 21+X|61+p]2]||\pelR
1 2 1
—1 -2 1
e) 3 |+A] 6 |+p]-3]|\pekR
b)o\z)

Exercise 1.15: As for lines, show that if a plane goes through the origin, then adding two vectors
on the plane gives another vector on the plane, and multiplying a vector on the plane by a scalar
gives another vector on the plane.

A plane is two-dimensional: we can choose two different real numbers, the two parameters A
and p. So we have “two degrees of freedom”. Any choice of the two parameters gives a different
point on the plane. Of course this is only true if the two direction vectors really are independent!
If we choose only one parameter, we have not determined a point in the plane.

C. Vectorspace R"

We saw that we can write a line equation in a way that works for two-dimensional vectors and
three-dimensional vectors at the same time. We also saw that while we can use our geometric
intuition, we can also just use algebra to work out questions about vectors.

Now we are going to look at higher dimensions, where we can’t easily visualise things geometrically
any more. If we have more than three entries in a vector, we as humans can’t easily imagine it in
our three-dimensional space, but we can still do the algebra, and use some of the intuition from
two and three dimensions to guide us.
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CHAPTER 1. VECTORS AND MATRICES VECTORSPACE R"

Definition 1.16: A vector in R" is a column vector with n entries, each of which is a real

number:
T1

T2

Tp—1
Tn

Vector addition and scalar multiplication work entrywise, as we saw in R? and R3:

T1 Y1 1+ T Az
Z2 Yo To + Yo To A%y
+ : = : and A : =
Tn—1 Yn—1 Tn—1 + Yn—1 Tn—1 )\$n71
Tn Yn Tn + Yn Tn Az,
Examples 1.17: ¢ When n = 2 or 3, these are just the examples we saw earlier.

o When n = 1, it is just a number: R! = R, and we add numbers and multiply numbers as
we are used to.

1
4 2
-9 1
o Here are some vectors in R*: , | 100
\/§ T
3 —4.2
1 0 0 0 0
0 1 0 0 0
o Here are some vectorsin R®>: |0, |0, |1[,]0],|0
0 0 0 1 0
0 0 0 0 1
o If we want to say something about vectors of any length, we use dots to indicate the
T1
T2 T
pattern of entries, as in - |. If n happens to be 3, this would still be | x5 |, even
Tn—1 3
Ty

though the general vector gives four named entries with dots inbetween.

o We often use notation such as v € R™ so we don’t have to write out entries with dots. We
can then still write entries when we need to.

o For any n, there is a vector with 0 in every entry, which we were calling “the origin”
before. We also call this the zero vector and write it as 0.

Definition 1.18: A linear combination of vectors u, v is an expression of the form A\u + pwv,
with scalars A\, p € R.

This combines vector addition and scalar multiplication. The concept of linear combination will
be very important throughout the course.

Examples 1.19: o If we set A = pu = 1, then just the vector sum of two vectors is an
example of a linear combination.
o Setting p = 0 gives Au as a possible linear combination.
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CHAPTER 1. VECTORS AND MATRICES VECTORSPACE R"

o We can have linear combinations of more than two vectors:

1 0 0
AMol+ul1]+v]o0
0 0 1

is a linear combination of three vectors. (v is pronounced nu)

Exercise 1.20: o If v is any vector, what is 0 - v?

x
o Can you write any vector ( ) € R? as a linear combination of the vectors <
Y

I

. T2 . . .
o Can you write any vector € R* as a linear combination of the vectors

xs3

[
o O O = N
VR
— o
o O = O N
~J

T4

? Can you do it with just the first three of these vectors?

o = O O
— o O O

We see that we can add vectors of the same size, and multiply a vector by a scalar, which results
again in a vector of the same size. Actually, these operations satisfy some rules:

Proposition 1.21: (Properties of vector addition and scalar mult)
Any vectors u,v,w € R™ and any scalars X\, u € R satisfy:

VAO u+veR" (closure under vector addition)
VA1 The zero vector 0 satisfies v+ 0 =v =0+ v. (zero vector)
VA2 There are negative vectors satisfying v + (—v) =0 = (—v) + v. (negative vectors)
VA3 (u+v)+w=u+ (v+w) (associativity of vector addition)
VA4 u+v=v+u (commutativity of vector addition)
SMO MveR" (closure under scalar multiplication)
SM1 1l-v=w (unit scalar)
SM2 A (uv) = (N - pv (associativity of scalar mult)
SM3 (A4 p) v=Av+ uv (distributivity of scalar mult over real addition)
SM4  Mu+v) =Au+ M (distribuitivity of scalar mult over vector addition)

We call anything that satisfies these axioms a vector space.

PROOF. You can verify these easily using the definitions of vector addition and scalar multi-
plication. (If you’re not sure, try it first for vectors in R? and R?, and then see that it doesn’t
really change when you use vectors in R™.) O

We will come back to these axioms/rules later and see that not only vectors in R™ satisfy them,
but also other sets of things. They will become our foundation of the theory of vector spaces,
which is the foundation of linear algebra.

VA stands for vector addition, and SM stands for scalar multiplication. You might wonder why
we start counting at 0: this is because the definition of vector addition and scalar multiplication
already implicitely includes these two properties. But it’s quite useful to state them anyway, as it
reminds us to check them later when we want to show that something satisfies these rules.
Associativity is a property that allows us to “leave away brackets” when we are dealing with more
than two vectors or more than one scalar. We say that vector addition and scalar multiplication
are associative. If you think this is something unimportant and surely always true, think about
the operation “to the power of”. Is 23") = (23)2? No! 26°) = 29 and (23)2 = 26.
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Commutativity means that the order of addition doesn’t matter. We will see some other kind
of operations soon where the order does matter! You can also use “to the power of” again: 23 is
not the same as 32. For vector addition, the order doesn’t matter, because we're adding in each
entry separately, and we know that when adding real numbers, the order doesn’t matter. We say
vector addition is commutative.

Distributivity tells us how to resolve brackets when we have addition (which could be vector
addition, or the addition of real numbers in the scalars) and scalar multiplication. Again this
property comes from the same property for real numbers.

We can define lines and planes in R™: while the intuition might not work any more of imagining
an actual line in space, the algebraic way of defining these concepts still works:

Definition 1.22: A line in R™ is a set of the form {u+ X-v | A € R}, where u,v € R™ are
fixed vectors with v # 0.

Definition 1.23: Two vectors in R™ are called parallel if one is a scalar multiple of the other.

Definition 1.24: A plane in R™ is a set of the form {u + X\ - v + pw | A, p € R}, where u, v, w €
R™ are fixed vectors with v # 0 # w, and v and w are not parallel.

We are particularly interested in lines and planes that go through the origin, because they them-
selves also satisfy the vector space axioms VAO-4 and SMO0-4.

1 0
Example 1.25: Taking the z,y-plane { A\ [0 |+p |1 ||\, ue R} in R3 we see that it looks
0 0

X

almost exactly like R?, except that we put a 0 as a third entry for each vector: given e R?

)

x

then |y | is in the x,y-plane of R3. As R? satisfies the vector space conditions, so does the
0

x,y-plane in R3.

Similarly the z,z-plane can be thought of as R? with a zero inserted in the middle, and the

y, z-plane as R? with a zero added before the entries.

So we are now interested in such subsets that behave like (smaller) kinds of R™ themselves.

Definition 1.26: A subspace of R™ is a set of vectors in R™ that also satisfy all the vector
space conditions VA0O-4 and SM0-4.

Some of the properties stay true automatically when we look at a subset of R": if u +v =v 4+ u
for any vector u,v € R™, then this property is automatically still true if we restrict u,v to a plane
or a line or any other subset of vectors.

VA3 associativity of vector addition

VA4 commutativity of vector addition

SM1 unit scalar

SM2 associativity of scalar multiplication

SM3 distributivity of scalar mult over vector addition
SM4 distributivity of scalar mult over real addition

are all of the kind that stay true in any subset of vectors.
So if we have a given line or plane or similar kind of subset, what we have to check is:
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VAO If we add two vectors in the subset, is the sum still in the subset?

VA1 Is the zero vector in this subset?

VA2 If some vector is in the subset, is its negative also in the subset?

SMO If we multiply a vector in the subset by some scalar, is it still in the subset?

If these are true, then we have a subset that is a subspace.

Notation 1.27: We write S € R"”, a round symbol, for subset, and S < R", a pointed symbol, for
subspace.

Actually, we can reduce it even further:

Proposition 1.28: A subset S of R™ is a subspace if and only if it satisfies:

o 0eS (zero vector is in the set)
o for anyu,ve S, u+veS (closed under vector addition)
o for anyve S and any Ae R, dve S (closed under scalar mult)

PROOF. If we check these three, then we automatically get negative vectors: —v = (=1)-v. O

BE CAREFUL: you might think that we can get rid of checking whether 0 is in the set as well,
because 0 - v = 0. But we do need to have some vector in the set: if there are no vectors at all,
then the “closed under” conditions are vacuously true (because there are no cases to check). But
if we don’t have any vectors at all, then we also don’t get 0, so it does not satisfy the conditions
to be a vector space.

Examples 1.29: o As we saw in an earlier exercise, a line through 0 (in R?, or R? or R")
is a subspace. You can think of it as a copy of the real number line R inside R™: choosing
the paramter A, one real number, gives you a point on the line.

o A line which doesn’t go through 0 is not a subspace: it fails all three of the conditions.
These lines have their uses, but for much of the course we prefer lines that go through 0.

¢ A plane through the origin 0 is a subspace. A plane which does not go through 0 is not
a subspace.

¢ You can have “bigger” subspaces as well:

T
€2

T1,%2,23 €R
zs3

0

is a subspace of R* that looks a lot like R3. Similarly

T 0
T2 T2
r1,To, x4 €ER and To,T3,T4 € R ete.

0 I3
T4 T4

z

T2

o T3 21,292,273 € R } is a subspace of R°.
Ty — T2
31‘3

The zero vector is of that type: use 1 = 9 = x3 = 0.
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Adding two vetors of that type gives another vector of that type:

x1 Y1 T1+ Y1
T2 Y2 T2 + Y2
x3 + Y3 = 3 + Y3
T — T2 Y1 — Yo (1 +y1) — (22 + y2)
3x3 3y3 3(z3 + y3)

A scalar multiple still stays of that type:

X1 )\Il
To ATa
A T3 = A3
X1 — T2 ()\$1) — ()\182)
3.133 3(/\1‘3)

Exercise 1.30: For the first examples, show that they are a subspace by checking the three
conditions. (This is meant to give you practice in remembering which conditions to check.)

Fact 1.31: These are all the possible subspaces of R?:

o Just the zero vector

¢ Any line through the origin.

o All of R2.
These are all possible subspaces of R3:
0
o Just the zero vector | 0 |[.
0

¢ Any line through the origin.
¢ Any plane through the origin.
o All of R3.

We will not prove it now, but we will learn tools later in the course that prove this.

D. Matrices

Our second main ingredient for linear algebra is something called a matrix.

Definition 1.32: A matrix is a rectangular array of numbers or terms. A matrix has rows
and columns. We refer to the size of a matrix as m x n, where m is the number of rows
and n is the number of columns. We write .#,, ,, for the set of all m x n matrices. If m = n,
so a matrix has the same number of rows as columns, we call it a square matrix.

Read the size “m by n”, not “m times n”.
What does a matrix stand for or mean? The answer is: one of many things, depending on the
context! A matrix can represent

o a collection of data,

¢ a function sending vectors of a certain size to other vectors,
¢ a system of linear equations,

© some other possibilities.

In the course we will mostly focus on a matrix representing a function, and a matrix representing
a system of linear equations. To explain both of these, we will have to learn how to multiply a
matrix times a vector. But let’s just do some slightly easier things first.
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Notation 1.33: We usually denote matrices by capital letters such as A, B, C etc, or perhaps
M. We write a;; or A;; for the entries of A: the first index ¢ gives the row and the second index j
gives the column.

Examples 1.34: o A= (1 O) is a 1 x 2 matrix with entries a;; = 1 and a2 = 0.
1 0). . .. .
o 01 is a 2 x 2 matrix. This is a square matrix.

_2 1
o B = 5 2 | is a2 x 3 matrix. Some of the entries are bjy = —%, bas = /3.
102 7T \/g

© x|

o A vector in R" can also be viewed as a n x 1 matrix.
o A 1 x 1 matrix is just a number: x. We usually leave out the brackets then.
ail a2
¢ | as1 a9o | is a general 3 x 2 matrix.
azr as2
Notice that many examples given in these notes and in other books use integers unproportionally
often. This is just because we humans find it much easier to calculate with integers, so when we
want to explain something new, we keep the surrounding things as simple as possible. In the “real
world”, you will not come across as many integers. But if we can let computers deal with the
calculations, it only matters that we understand what is going on, and we can learn that just as
well on integers.

Definition 1.35: Two matrices A and B are equal if they have the same size and all their
entries agree.

3 2 3 20
Examples 1.36: o (1 3) and (1 3 O) are not equal, as they don’t have the same

size.

3 2 2
o A= <1 3) and B = f are not equal, as not all their entries agree. Can you
Yy

choose values for z and y such that A = B?

o Let A and B be matrices with entries 4;; = ¢/ and B;; = #/. Must A = B? NO: Suppose
Ais a 3 x 3 matrix but B is a 2 x 3 matrix. They are not the same, but we might not
have noticed if we just check the formula for the entries.

1

bl 11 1
A=12 4 8 B—( )
2 4 8

39 27

Definition 1.37: In a square matrix, the entries A;; are called the diagonal entries. The
sum of the diagonal entries is called the trace of the matrix, written trA.

Example 1.38:
a1 a2 a1z
A= |ao1 ase ags | hastrace trA = ay1 + asg + ass.

a3l asz2 ass

Definition 1.39: A square matrix in which all diagonal entries are 1 and all other entries are
0 is called an identity matrix and written I, or I, if it has size n x n.

MA1114 Linear Algebra Page 18 prepared by Julia Goedecke, 2019



CHAPTER 1. VECTORS AND MATRICES MATRICES

Examples 1.40:

I

fon

Il
~— N
S =
— O
N~

&

|
o O =

o = O
—_ o O
o O O =
o O = O
O = O O
_ o O O

Definition 1.41: Given two matrices A and B of the same size, their matrix sum A + B is
calculated entrywise: (A + B);; = Ai; + B;j.
We can multiply a matrix by a scalar by multiplying each entry: (AA);; = AA;;.

Examples 1.42: Matrices have to be the same size if we want to add them! We cannot add
matrices of different sizes.

o) (03 -(0 )

<>3~(13):(39)
100 01 0 430
od4-lo 1 ol+3lo 0 ol=]0 4 o0
00 1 00 0 00 4

As for vectors, we call this combination of matrix sum and multiplying by scalars a
linear combination of matrices.

Exercise 1.43: If it is possible, add the following matrices.

()

&
RS
0 =
[CEEN)
~_

_|_
© w ©
N G0
NN = O

S N ©
e

Proposition 1.44: (Matrices form a vector space)
The set Mo, n of all matrices of a given size satisfy the conditions VAO-4 and SMO-4.

PROOF. You can check this in the same way as for vectors: all the operations just happen in
each entry. O

We can “turn matrices the other way around”:

Definition 1.45: The transpose of an m x n matrix A is the n x m matrix A7 with entries
(AT)i; = Aji.

So the rows and columns are being swapped.

Examples 1.46: We can transpose square and non-square matrices.
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r (1 9 T 3
13 2 2 3 2 1 T
o —[3 2 o - <>(321)=2
9 2 —1 18 3 8
2 1 1

You can see that the diagonal entries stay the same in the transpose.

Proposition 1.47: (Properties of Transpose)

For any matrices A, B of the same size, and A € R, we have
(i) (AT)T = A;
(ii) (A+ B)T = AT + BT,

(iii) (A\A)T = \AT.

PROOF. First check that the matrices on either side of each equation have the same size. Then:

(i) (A1) = (AT)ji = Ay
(il) ((A+B)")ij = (A+ B)ji = Aji + Bji = (A")ij + (BT)y
(i) (AA)D)i; = (AA)ji = My = MAT);; O

Example 1.48:

T T
1 2 _(r 3y (1 2
3 4 S \2 4)  \3 4
E. Matrix multiplication

So now we will learn the crucial way that a matrix acts on a vector.

Notation 1.49: Given a matrix A, we refer to the columns by Ay, As,..., A, or a1, as,...,a0,:
1 1 T
ay ag an
l l l

Definition 1.50: (Matrix times vector) An m x n matrix A can act on a vector v € R™
to give a vector Av € R™, in the following way:

1121 + Q12T + -+ A1pTn

a11 a12 T A1n—1 Q1n x1
a1 a2 e A2p—1 Q2n T2 2171 + A22%T2 + - - - + A2 Ty
m—11 Om—12 Um—1n—1 O(m—1n Tp—1 Am—1121 + Apm—1222 + -+ + Am—1nTn
Am1 am2 o Amn—1 Amn L Am1T1 + Am2Z2 + *+* + AmpTn
or
T
1 1 1 T2 1 1 1 1
ar - Ak o ap o |F e | tre|a |t F T [ anaa | T 20 | an
! ! . ! ! ! !
L
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Examples 1.51: o If the matrix is just one row, you get a single number as the answer,
and you might have seen something like this as a “dot product of vectors”:
T
T2
(a b ¢ d e) x3 | = axy + bxo + cx3 + dry + exs
T4
L5

o The 2 x 2 case is perhaps easiest written as

() ()

o Here is the 3 x 3 case written out:

aip a2 a3 T a11T1 + a12T2 + 41373
az1 Q22 @23 T2 | = | G2171 + A22%2 + A2373
asy as2 as3 T3 a31x1 + a32x2 + a33x3

o Here is a visual picture that might help:

Think about “a row times a column”: first entry in row times first entry in column, plus
second entry in row times second entry in column, and so on. So it’s just several times
the very first example.

o Here’s an example with numbers:

7
123y o) 1-74+2-84+3-9
4 5 6 0 - \4.7+5-846-9

o Multiplying a vector by the identity matrix does not change it:

1 0 - 0 I I
0 1 0 T2 T2
o o0 --- 1 Ty Ty,

© The second way of viewing it can be helpful sometimes: A matrix times a vector is the
linear combination of the columns of the matrix, with the entries of the vector as the
scalars for the linear combination. Using the second expression of the definition in the
3 X 3 case, it looks like this:

T 1 1T\ (= 1 1 1
ay az as To|l=T1|ar |+tx2|ax |+T3 ]| as
Vol L) \as l l !

This viewpoint tends to be more useful in understanding of certain properties and rela-
tionships than for explicit calculation, though you can use it if you find it helpful.

0 1 1 9 1
1 2 o133 2 <2>
8/ \3 2 -1
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1 1
3 2\ (1 1 3 2
o o 3 o |8
5 1 1 9 2 -1
2 0

This now allows us to view a matrix as a function:

9
0
2
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Definition 1.53: An m x n matrix A can be viewed as a function T4 : R® — R™: it takes a
vector v € R™ and sends it to T4 (v) = Av, the matrix times the vector. We call this a matrix
transformation.

3 2 3z +2
Examples 1.54: o A= sends a vector ) er2 to the vector ey e R?,
5 1 Y 5T + 1y
so it represents a matrix transformation T4: R?2 — R2.
1 3 2
o B= (9 5 1) gives a matrix transformation Tz: R3 — R2.
19
o C= |3 2 |gives a matrix transformation T¢: R? — R3, the other way round to B.
2 -1

¢ An identity matrix I,, corresponds to the identity function id: R” — R"™: each vector
gets sent to itself. I,,v = v, so T7, (v) = v.

As well as multiplying a matrix times a vector, we can multiply matrices of matching sizes.

Definition 1.55: (Matrix multiplication) If A is a m x r matrix and B is a r x n matrix,
T

then we can form the matrix product AB with entries (AB);; = Y, A;xBg;. Thisisamxn

k=1

matrix.
We can also write down the matrix product using the columns of the second matrix: if

1 1 1

B = bl bk bn b

! ! !
then

1 1 1

AB = | Aby --- Abp --- Ab, |,
! ! !

using the matrix times vector operation we have already defined.

You can visualise it:

The entry in row 4, column j of the product AB is calculated by taking row ¢ of A times column
j of B, as calculated in the first example of matrix times vector.

Important! You can only multiply matrices if their sizes match. Each single entry is calculated by
a row of the first matrix times a column of the second matrix, and this is only possible if those rows
have the same size as the columns. So to be able to multiply two matrices, the middle numbers of
their sizes have to match:

A - B = AB
mxr rXn mxn

And this middle matching size “drops out” to give you the size of the product.
You can see that a similar pattern of middle matching index happens in the formula for an entry
of the matrix product.

Examples 1.56: ¢ Our previous examples of matrix times vector still are examples for
this, as a vector can be seen as a matrix with just one column. So in particular, if

MA1114 Linear Algebra Page 22 prepared by Julia Goedecke, 2019



CHAPTER 1. VECTORS AND MATRICES MATRIX MULTIPLICATION

by
be
A= (a1 as az ay4 a5) is a 1 x5 matrix and B = | b3 | is a 5 x 1 matrix, the
by
bs
product AB will be a 1 x 1 matrix, i.e. a number.
b1
bo 5
<a1 az asz a4 a5) b3 | = a1b1 + asbs + aszbs + asby + asbs = Z apby = ZAlkBkl
by k=1 k
bs

So for any other example, per entry we are doing exactly this calculation with the appro-
priate row from the first matrix and the appropriate column from the second matrix.
o If A and B are both 2 x 2 matrices, we get

ail a2 bi1 b2 _ a11bi1 + ar2bar  ai11biz + a12b2o
a1 a2 ) \bar boo a21b11 + az2bar  az1b12 + azobao
If you look carefully, you can see that for the 4, jth entry, we have a;1b1; + a;2b2;. This

is the sum in the definition written out for this case.
o Here are visualisations for non-square examples:

I~ o
() =] e
— -
— —
3x3 3 x2 3x2 2x3 3x3 2x3

o If Ais a3 x 3 matrix and B is a 3 x 2 matrix, as in the first visual example above, then
for example the entry in the first row and second column of the product is

(AB)12 = anbiz + a12bss + a1sbsy = ) | a1kbo

k
o Here are some examples with actual numbers:
1 2 3\ /10 11 1-10+2-12+3-14 1-11+2-134+3-15
4 5 6|12 13|=14-10+5-124+6-14 4-11+5-13+6-15
7 8 9/ \14 15 7-10+8-12+9-14 7-1148-134+9-15
3x3 3 %2 3x3
1 2 1-104+2-13 1-114+2-14 1-12+2-15
3 4 (10 1 12)— 3 1014 13 3 1114 14 4 1214 15
13 14 15/
5 6 5.-10+6-13 5-11+6-14 5-124+6-15
3 x2 2x3 3x3

CAREFUL! In general, AB # BA. Indeed, for most size of matrices, these products are not both
defined. But even for square matrices, it is not the case:

SRR
LoD
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There is one matrix which is very easy to multiply by:

Proposition 1.58: (Product with identity matrix)
If A is an m x n matriz, then AL, = A and I, A = A: multiplying by an identity matriz (of
the correct size) does not change a matriz.

You can think of this as the matrix equivalent of multiplying by 1.
n
PROOF. By definition of matrix multiplication, (AI,)i; = > Ait(Ln)kj- But (In)k; = 0 when
k=1

k # j, and (I,);; = 1. So this sum reduces to (Al,)i; = > Aik(In)k; = Aij(In);; = Aij. So A
k=1

and AI, have exactly the same entries (and the same size),_so A= AI,.
Similarly for I,, A. O

When it says “Similarly” in a proof, this is a “hidden exercise”: you can test whether you really
understand what is going on by trying to do that part yourself. First try to do it without looking
at the previous part of the proof, and only use that as a hint if you get stuck.

When we multiply more than two matrices, it does not matter how we set brackets:

Proposition 1.59: (Associativity of matrix multiplication)
Matriz multiplication is associative: (AB)C = A(BC) for any matrices whose sizes make this
multiplication possible.

PROOF. First we can work out that the sizes of (AB)C and A(BC) must be the same. (Ex-
ercise.)
Let’s work out an entry of the expressions on both sides.

((AB)C)ij = D (AB)iCrj = )| (Z AisBsk> Crj = Y >, AisBaiCh;j

k k k
where the last step is multiplying out the bracket.

(A(BC))ij = > Ais(BC)sj = > Ais (Z Bskckj> = > ) AiBuC;
s s k k

S

We can see that both expressions are the same, so A(BC) = (AB)C. O

We can think of this result as saying: When multiplying several matrices, we don’t need brackets.

Exercise 1.60: Let A be m x 7, B be r x [ and C be [ x n. Write out the above proof with
expanded summations. E.g.

((AB)C)Z-j = (AB)ﬂClj + (AB)iQCQj + (AB)iSC3j + -+ (AB)Z'ZC[]*

and then the same for each (AB);; entry and so on.
Purpose of the exercise: see how convoluted matrix multiplication can get; this is not as obvious
aresult as (A+ B) +C = A+ (B + C)! Also see the advantage of the summation notation.

Given a square matrix, we can multiply it with itself again and again:

Definition 1.61: If A is a square matrix, then the kth power of A is
AF = AA--- A,
the product of k copies of A. We define A° = I.

Proposition 1.62: (Transpose of product)
(AB)T = BT AT for all matrices A and B for which the product AB is defined.
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PROOF. First we have to verify that (AB)T and BT AT have the same size. (Exercise.)
Then we look at an entry.

(AB)T);; = (AB);; = ZAjkBM
k
and
(B"AT)i; = > (B )ir(A" )iy = D BriAji.
k k
As both expressions are the same, we have (AB)T = BT AT, O

(G666
(o) 6666 )
bo) (o) -Gl )6

If you ever need to work out what (AB)T might be and can’t quite remember, then taking non-
square matrices and working out the relevant sizes can help you work out what it must be.

Example 1.63:

but

On the other hand

Example 1.64:

1 9 3 10 11 12 13
14 15 16 17|=AB
4 5 6
18 19 20 21
2x3 3 x4

can be multiplied.

10 14 18
11 15 19
12 16 20
13 17 21

4x3 3x2

1 4
2 5|=BTAT

can also be multiplied, but

10 14 18
11 15 19
12 16 20
13 17 21
3x2 4x3

_ ATBT

w N =
S Ot

cannot be multiplied: the sizes don’t fit.

We saw that a matrix can act as a function, so what happens when we multiply two matrices?

Definition 1.65: Given any functions f: X — Y and g: ¥ — Z, X # Y
the function gof: X — Z defined by (gof)(x) = g(f(z)) is the com-
posite of g and f. gof g

Z
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This composite is just doing first f and then g. Notice that when we write gof, we do f first: it
is easy to remember if you imagine applying it to an element x, as the f is next to the z.

Proposition 1.66: (Composite matrix transformation)

Given two matrices A € My, and B € M, ,, the composite of R TB; R”
their matriz transformations Tx: R”™ — R™ and Tg: R" — R" is
the matriz transformation of the product: Thn Ta

TAB = TAOTBZ R"® — R™. R™

PROOF. For any v € R", we have T4yp(v) = ABv, and also (T40Tp)(v) = Ta(Tp(v)) = ABuv.
SO TAB = TAOTB. O

Finally, we've already mentioned that linear combinations are one of the most important concepts
in Linear Algebra, and matrix multiplication preserves linear combinations.

Proposition 1.67: (Matrix multiplication is linear)
Matriz multiplication preserves linear combinations. That is, if A, A’ are m x r matrices and
B, B’ are r x n matrices, and \, € R, then

AB + puB') = AAB + uAB'  and (M + pA")B = \AB + uA'B.

PRrROOF. To show the two matrices on each side of the equation are equal, we have to check
that they have the same size, and that all entries agree.
A is an m x r matrix, and AB + uB’ is an r x n matrix, since both B and B’ are. So A(AB + uB’)
is an m x n matrix. So too are AB and AB’, so AAB + pAB’ is also an m x n matrix, so the sizes
are the same. We now look at an entry of each:

r

(AAB+puB"))ij = ¥, Ais(AB + puB')y; def of matrix mult
k=1
= Aix(AByj + uB,’Cj) def of matrix sum
k=1
= Z MAirByj + uAikB,’cj calculating in R
k=1
= (AMAB + pAB');; def of matrix mult

Similarly for the second equation. It is a good exercise for you to do the proof of the other
equation: try it without looking at this proof, and only use it as hints. This will help you see if
you understand, and find the points where you might need to ask some more questions or go over
something again.

You could also try writing out the summations in long-hand. Maybe try it for 2 x 2 matrices. [

Corollary 1.68: In particular, matriz transformations are linear. That is,

Ta(Au + pv) = AXTa(u) + pTa(v).

PROOF. This is because matrix transformations are calculated with matrix multiplication:
Ta(v) = Av. O

We won’t use this very much now, but it is one of the most important concepts of Linear Algebra,
so seeing it several times will hopefully help you to become friends with it.

F. Vectors and Matrices: Study guide
At the end of each Chapter, you will see a study guide like this, with concept review and skills.

The concept review lists concepts you need to understand: can you write down the definition or
statement of this? Can you give some examples and counterexamples of this concept?
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The skills are things you need to be able to do, so you need to practise them.
You can use these lists to help you check if you have covered the important things of the section,
while you're learning it and also when you come to revision.

Concept review.

<

[ R R I VIR IR R R

<

Vectors in R?, R? and R™.

Linear combination.

Lines and planes in R?, R? and R™.
(Informally) degree of freedom, e.g. of lines, planes.
Parallel vectors.

Vector space axioms for R”.

Subspaces of R"™.

Matrices, size of matrix, square matrix.
Matrix as function: matrix transformation.
Transpose matrix.

Linearity of matrix multiplication.

Skills.

<

LSRR R I R IR R

Add vectors, multiply a vector by a scalar, form linear combinations of vectors.
Determine whether a given set is a line or a plane, and whether it goes through 0 or not.
Determine whether two vectors are parallel.

Determine whether a given set is a subspace of R™.

Add matrices, multiply a matrix by a scalar, form linear combinations of matrices.
Form the transpose of a matrix.

Multiply a matrix and a vector.

Multiplly two matrices of matching size.

Determine whether two matrices can be multiplied or not.
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CHAPTER 2

Linear Systems

Another way to view matrices is that they represent a linear system. We will see in this chapter
what a linear system is, how we can solve it using matrices, and what form the solutions take.
One reason for doing this is that it is a very efficient way of solving linear systems. Also, when
we learn more linear algebra theory later in the course, we will come across the need to solve such
linear systems again and again in different contexts. So this chapter will give you an essential tool
for the rest of the course, and beyond.

A. Linear equations

Definition 2.1: A linear equation in n unknowns (or variables) is an equation which
only involves scalar multiples of the unknowns on one side of the equation, and a constant on
the other side:

a1T1 + asxo + -+ +apr, = b
with 21, -, 2, the unknowns, and a;,--- ,a,,beR.
A linear equation is called homogeneous if b = 0.

Examples 2.2: o 3x—4y = 0 and 3z—4y = 8§ are linear equations with two unknowns/variables.

The first is homogeneous, the second is not: it is inhomogeneous.
o 7xy + 3.529 — dxs + 14 = /3 is a linear equation with four unknowns.

Examples 2.3: (Counterexamples) The following are not linear:

o 22+ 2y = 0, zy = 1: products of variables are not allowed.

¢ 2z — ,/y = 1: no roots of variables are allowed.

o sin(x) — cos(y) = 1: functions like sine, cos, log etc are not allowed in linear equations.
¢ €% = 2: unknowns can’t appear in exponents.

We are interested in the solutions to such linear equations. Let’s see what these solutions have to
do with lines.

Example 2.4: The linear equation 3x — 4y = 0 has many solutions: we can pick y to be what we

z 4
want, and then z is determined. For example, = 3 is a solution. Any other solution is a
Y

4 4 4
multiple of this: (3;), ort <3> So the set of all solutions is a line {t <3> te R}.

If we now take the same equation but make it inhomogeneous, we will get something similar:

2 4
3z — 4y = 2 has solutions { <1> +t (3)

2
but is parallel to the line that solved the homogeneous equation. . is a particular solution of

te R}. This is a line which does not go through zero,

4
the inhomogeneous equation, but since 3-4 —4-3 = 0, adding a multiple of 5 to this particular

solution still gives a solution: 3(2+¢-4) —4(1+¢-3)=(3-2—4-1)+t(3-4—4-3)=2+1¢-0.
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As we have two variables and one equation, we have “one degree of freedom”: we can choose one
of the two variables, and then the other is determined by the equation. “One degree of freedom”
corresponds to a line.

Example 2.5: The solutions to a linear equation with three variables form a plane rather than a
line: now we have “two degrees of freedom.”

%s — 3t
2x1 — 3xy + 6x3 = 0 has solutions s s,teR }: we can choose two of the variables,
t
2o = s and x3 = t, and then x; is determined by the equation.
3 -3
If we write thisas < s- | 1 |+t| 0 |[|s,t€ R }, we can see that this is indeed a plane. We can
0 1

choose s and ¢ independently, which gives us two possible solution vectors which are not parallel.

What happens if we have several such equations? Then a solution to the whole system is the
intersection of all the solutions to the individual equations.

Definition 2.6: A system of linear equations is a collection of one or more linear equations.
Such a system is called homogeneous if all the equations in it are homogeneous. A solution
of a system of linear equations is an n-tuple x1, xs, ..., z,, which solves all equations
simultaneously.

Notice that one solution of the system needs to provide a value for each unknown: all these together

T
T2
form one solution. We can think of a solution as a vector
T
Examples 2.7: ¢ Consider the linear system
3r—4y =2
20 —y =0

These two equations represent two lines:

Q) = )

A solution to the system is an intersection of the two lines. You know how to solve such
a system from school: the second equation gives y = 2z, and using this in the first, we

Then y = —%. So <

N

get 3x —8x = 2, or z = —

(S]]

(SN

) is the solution to this sytem.

There is only one solution.
o This system has no solutions:

3r—4y =0
6r —8y =14

The two lines are parallel, so they don’t intersect.
¢ This system

3r —4y =2
6r —8y =4
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has a whole line of solutions: the second equation is just twice the first equation, so both

equations represent the line
2 4
+t ,
1 3

which gives all solutions to this system of equations.
Later we will investigate further when a linear system has a unique solution, when it has no solution
and when it has infinitely many solutions, like the line in the third example.

Definition 2.8: A linear system is consistent if it has some solution. A linear system is
called inconsistent if it has no solution.

If a linear system has infinitely many solutions, then a parametric expression from which all
solutions can be obtained by choosing values for the parameters is called a general solution.

3z —4y =2 is 2 4t 4
6z —8y =4 1 3

In the previous example, the first and last linear system are consistent, and the middle one is
inconsistent.

Example 2.9: The general solution to

The aim of this chapter is to learn a systematic way of solving such systems of equations, using
matrices.

Notation 2.10: A system of linear equations
a11%1 + a12T2 + + - + Q1p—1Tn—1 + A1nTn = by

a21T1 + 22T + -+ - + Aop—1Tp—1 + A2 Ty = b2

Am1%1 + Gm2T2 + - + Amp—1Tn—1 T AmnTn = bm

can be represented in matrix form as

Z1

aix a2 - Qip—1 Qin by
X2

a1 G ccr Ap-1 A2p . bo
Tn—1

Am1  Am2 o Amn—1 Amn bm
T,

Here all the coefficients of the variables are collected in a matrix. If A is this matrix, and
we write z for the vector of variables and b for the vector on the right hand side, the system
becomes a matrix equation

Az =b.

Remember how matrix multiplication works: if you multiply the left hand side out, you literally
get the left hand sides of all the equations.

T
ai; a2 ' Qip—1  Qlp . a11T1 + @122 + - + A1p—1Tp—1 + A1pTy
2
a1 G2z -+ G2p-1  d2n ) (2171 + A22T2 + -+ + A2n—1Tn—1 t 2T
Tn—1 X X
Am1 Am2 e Amn—1 Amn T Am1T1 + Am2T2 +--+ Amn—1Tn—1 + AmnTn
n
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You can see that the matrix has as many columns as there are variables or unknowns, and as many
rows as there are equations. Each row of the matrix represents one equation (or at least the left
hand side of it).

So if you have a homogeneous system, you know all you need to know about it just from the matrix

air a2 - Qip—1 Qln
a1 az2 - ag2n—1 A2n
Am1 Am?2 T Amn—1 Amn

So we can use this matrix as a short hand notation for the corresponding homogeneous system of
equations. If we want to put in the bs on the right hand side as well, we can do it:

Definition 2.11: An augmented matrix is a matrix of the form

aii a2 - Glp-—1 ain | b1
a21 a2 -+ G2p—1 Aoy | b2
Gmi Am2  °  Gmn—1  Gmn | bm

So we just add the column of bs on the right hand side, and we use the vertical line to remember
that they are on the other side of the equation.

Notation 2.12: A homogeneous system of linear equations
41171 + a12%2 + -+ + Q1p—1Tp—1 + A1 Ty =0

a21%1 + A22%2 + -+ + A2p—1Tp—1 + A2,Tpn = 0

Am1T1 + G222 + - + Ap—1Tn—1 T GmnTn = 0

can be represented by a matrix

ai1 a12 o A1n—1 A1n

a21 a22 toe a2n—1 a2n
A=

aml Am2 - Umn—1 Amn

An inhomogeneous system
1121 + a12%2 + - + A1p—1Tp—1 + Q1nTyn = b1

a21%1 + A22T2 + - + A2p—1Tp—1 + A2 Ty, = by

Am1T1 + Gm2T2 + - + Cpn—1Tn—1 + GmnTn = b

can be represented by an augmented matrix

aii a2 - A1n—1 ain | b1
a21 a2 -+ G2p—1 a2y | b2
Gmil Am2  * Gmn—1  Gmn | bm

Each row of the matrix represents an equation.

You see it is short hand because we’re not writing out the variables x1, ..., z,: their presence is
implied by the number of columns in the left hand part of the matrix.
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Examples 2.13: Here are some linear systems and their corresponding (augmented) matrices.

31 —x2 =0 3 -1
21’1 — 41‘2 = 0 2 —4
—bx1 + 629 =0 -5 6
T+ 229 +x3 =2 1 2 112
—xr1— 29 t+x3=1 -1 -1 1|1
3r1 — 22 + 473 =2 3. -1 4 072
—x1 — 32 +v224 =0 -1 =3 0 V2|0

T To — 373 =-5

What is the easiest kind of linear system to solve? One which already gives all the solutions:

T = b1 1 0 --- 0 bl
o = bg 0 1 cee 0 b2
T, = by 00 --- 1]b,

We can see that in this case we have the same number of equations as we have unknowns, so we

get a square matrix (if we leave out the bs). But only the diagonal entries of this square matrix
are NON-Zero.

Definition 2.14: A diagonal matrix is a square matrix in which only the diagonal entries
are non-zero:

a;p 0 0 0
0 a922 0 0
0 0 Ap—1n—1 0
0 0 0 e

Clearly we can solve it just as easily if the diagonal entries are not 1: we just have to divide the b;
by a;; (as long as a;; # 0).
The next best system is one like this:

T1 + apr2 + -+ aipTn, = b 1 a2 -+ am|b
l‘z + “e + aznmn = b2 O ]. M a2n b2
T = b, o o - 1 |b,

We can substitute the last equation into the one before to get x,,_1, then substitute that into the
previous one, and so on upwards until we have all the solutions. Again, we see it doesn’t matter
so much if the diagonal entries are not 1.
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Definition 2.15: An upper triangular matrix is a square matrix in which all entries below
the diagonal are zero:

a1 aiz - A1n—1 Q1n
0 ax -+ a1 a2y,
O O tee Ap—1n—1 Ap—1n
0 o --- 0 Ann

A lower triangular matrix is a square matrix in which all entries above the diagonal are
ZETO.

So our aim is to transform any linear system into one of these upper triangular ones, or a diagonal
one, and then the solution can be easily determined or read off. Or at least as close to this as
possible: not all systems can be transformed quite into this nice form. We will see what the closest
possible is a little later.

B. Elementary row operations

There are three very simple types of operations we can perform on a system of equations, which
are enough to transform the system into a diagonal form which gives the solutions. Any operation
performed on the rows of the augmented matrix is an operation performed on the equations of the
corresponding linear system.

Definition 2.16: The three types of elementary row operations are

1. Multiply one row by a non-zero scalar.
2. Swap two rows.
3. Add a multiple of one row to another row.

None of these operations change the solutions to a linear system.

Example 2.17: Applying the elemetary row operations to the augmented matrix corresponds to
manipulating the equations of the linear system.

Txy + 320 =3 (7 3 3)
1 +22 =1 L 171
Swap first and second row:
Ttz =1 1 11
Try + 310 =3 (7 3 3)
Add —7 times first row to second row:
24y =1 (1 1] 1 )
0—4dxo =—4 0 —4|—-4
Multiply second row by —i (or divide by —4):
| (1 1 1)
T =1 0 111
Add —1 times second row from first row:
1 =0 1 010
To =1 (O 1 1)

T 0
So this system has a unique solution, ( H = )
T2

You can see that using the augmented matrices rather than the equations is more efficient and
visibly much clearer.
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In Linear Algebra, you can often check your own solutions. For example, take the solution we have
just arrived at and check it in the original equations:

7-0+3-1=3
0+1=1
all checks out.
You can also see that all these elementary row operations can be reversed, so we never lose any

information.
Careful! Make sure you never multiply a row by 0! This deletes all information from that row.

Definition 2.18: If matrix B can be obtained from matrix A by elementary row operations,
we say that A and B are row equivalent.

As every elementary row operation can be done “in the other direction”, this is a symmetric
relationship: if B can be obtained from A via elementary row operations, then A can also be
obtained from B via elementary row operations.

C. Gauss algorithm

We will now learn an algorithm that tells us which elementary row operations to do to transform
a linear system into a form where a solution can easily be read off.
We saw that the nicest would be a diagonal form, but this is not always possible.

1+ 22 +x3 =2 (1 2 1

2
—x1 — T2 +x3 =1 -1 -1 1|1
cannot be made diagonal or upper triangular: it does not have enough equations.

The next best thing is
1 2 1{2\qmer (1 2 1|2\1-om (1 O —-3|—4
-1 -1 1|1 01 2|3 01 2|3
T, — 3x3 = —4

Ty + 2x3 =3

Example 2.19: The system

corresponding to

We can then choose z3 to be whatever we like (say 1, or a parameter t), and then read off z; and
xo from the above.

Notice that we can keep track of the elementary row operations in each step: here the roman
numerals represent the rows.

Definition 2.20: A matrix is in (row) echelon form if the following hold:

o If a row does not consist entirely of zeros, then the first non-zero entry in the row is
a 1. We call this a leading 1.

o Any rows consisting entirely of zeros are grouped together at the bottom of the
matrix.

¢ In any two successive non-zero rows, the leading 1 in the lower row occurs further to
the right than the leading 1 in the higher row.

If in addition each column that contains a leading 1 has zeros in every other entry, then the
matrix is in reduced (row) echelon form.
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A matrix in echelon form looks like this:

1 = = * k%
0 1 * ok
0 0 O 0 1 =
0 0 O 0 0 O

A x represents an arbitrary entry. A matrix in reduced row echelon forms has zeros above all the
1s:

1 0 % -+ % 0 =
0 1 0 =
0 0 0 0 1 =
000 --- 000

For an augmented matrix, we just look at the part on the left hand side of the line to determine
whether it is in echelon form or not.

Examples 2.21: The following matrices are in echelon form, but not reduced.

01 2 4

1 8 -2 1 -1 2 3|1
1 3 2|1 0 0 01

o0 1 =2f. o o o0 1 1 2|-1
0 0 1|1 0 0 0 O

0 0 1 0 0 0 1|0
0 0 0 O

Exercise 2.22: Bring the above matrices into reduced row echelon form.

Examples 2.23: The following matrices are in reduced echelon form.

10 00 10 0 0|1 1 0 2
1 -5 1|4

o0 1 2|0 o0 1 2 0| 2 o0 1 -1
0 0 0|0

0 0 01 0 0 0 1]-1 0 0 O

Exercise 2.24: Determine whether the systems above are consistent (whether they have a solu-
tion), and if yes, give the general form of the solution.

Gauss Algorithm: The Gauss algorithm transforms a matrix into row echelon form by the
folllowing steps:

¢ Locate the left-most column that does not consist entirely of zeros.

© Swap rows to bring a non-zero entry to the top of the column you identified in the
first step. We call this non-zero top entry the pivot element.

o Divide the first row by the pivot element to obtain a 1 at the top of the column.

¢ Add suitable multiples of the top row to the rows below so that the entries below
the leading 1 become zeros.

© Now cover the top row of the matrix and begin again from the start, now applying
the steps to the submatrix that remains.

¢ Continue this way until the matrix is in row echelon form.

Informally, what the Gauss algorithm does is to simplify the equations, get rid of any superfluous
ones (which will transform into zero rows), and get the rest into a form where a solution can be
read off more easily.

This is best seen on examples:
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Examples 2.25: o We use the Gauss algorithm on the following matrix. There is already
a 1 in the top of the first column, so we clear the entries below it:

1 -2 1|0 1 -2 1] o0
8| 8 "o 2 —g8]| 8
4 5 9 |-9 0 —3 13 |—-9

Now we cover the first row and continue with the rest of the matrix. There is a 2 at the
(new) top of the second column, so we divide the second row by 2. Then we clear the
entry below that in the third row.

12 1o\, (1 -2 1]0 1 -2 110
0 2 —s8| 8|20 1 —a|a|™3 0 1 44
0 -3 13 |-9 0 -3 13 |-9 0 0 113

Now the matrix is in echelon form.

¢ This time we find that the top entry of the first row is 0, so we have to switch another
row into the top, and then divide that row so we get the leading 1. Then we clear the
entries below it.

0 1 —4|8 2 -3 2|1 1 -3 13 1 -2 14
LTI 31 1151

2 =3 2 (1|0 1 —4|8|—=]0o 1 —4|8| — [0 1 -—4|3

5 -8 71 5 -8 71 5 =8 7|1 0 -4 2 |-3

Now we repeat for the last two rows: there is already a leading 1 in the second column,
so we clear the entry below it:

1

1 -4
3

2 | —3

Nl

3
-3 1
—4

I+ 311 1
0 0

1
37 10
0

o O =
0o W=

vjot GO NI

N|—

Now the matrix (up to the vertical line) is in row echelon form. We see that this system
is inconsistent: the last line says 0-x1 +0-22+0-23 = %, which is of course not possible.

Once a matrix is in echelon form, we can work out the solution. Many computer systems that
solve systems of equations for huge matrices use this method.

However, for us as humans working usually on reasonably small (up to 5 x 5 or so) matrices, it is
extremely helpful to keep going until the matrix is in reduced row echelon form, as we can then
just read off the solutions.

Gauss-Jordan Algorithm: The Gauss-Jordan algorithm transforms a matrix into reduced
row echelon form by the following steps:

¢ Use the Gauss algorithm to bring the matrix into echelon form.
o Working upwards from the lowest non-zero row, clear the entries above each leading 1.

Examples 2.26: Finishing off the two examples above:

o We clear first the third column and then the second column.

1 -2 110 1 -2 0]-3 1 0 0]29
0 1 —4l4|"™ET o 1 o6 "2 o 1 016
0 0 13 0 0 1] 3 0 0 1|3
29
So the unique solution to this system is | 16 |-
3
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¢ Since the second system we had was inconsistent, it makes no sense to keep going, as it
doesn’t have a solution. So let’s change it slightly so that the echelon form is

L5 13\, 0 —5| 2%
+311

0 1 —48[—= |01 —4|38
0 0 0|0 00 00

This is now in reduced row echelon form, and there is one column that has no leading
1s, highlighted in green. Such a column means that the corresponding variable, here x3,
can be anything, so we can make it a parameter, x3 = t. We can choose that variable
freely. This is why I informally call this column a freedom column, or a stuff column,
because it has stuff in it that we can’t clear.

So how do we read off our solution: let’s first transform it back into equations so we
can explain what’s going on.

25

1‘175173:?
$2—4$3:8

Choosing x3 =t and putting it on the other side, we get

25
T = ? + 5t
To = 8+ 4t
So the solution set to this system is
25
5 )
8 |+t|4f||teR
1

¢ Let’s do one more example where we get two freedom columns. For simplicity we’ll make
it a homogeneous system.

1 2 6 8 1 2 6 8 1 2 6 8
29 _1 2 4 0 —5 —10 —20 0 -5 —10 —20
3 1 8 4 0 -5 —10 —20| o o o o
1 -3 —4 —12 0 -5 —10 —20 00 0 0
12 6 8 102 0
01 2 4 01 2 4
o oo o]l “|oooo
0000 0000

Now we have two “stuff” columns, one green (third column), one purple (fourth column).
So we can choose 3 = s and x4 = t. So our general solution is

T —2s
x| —2s — 4t
T3 B S

Ty t

or we can write it as a solution set:

-2 0
-2 —4

S +1 s,teR
1 0
1

(See videos on Blackboard for more steps.)
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Example 2.27: (Worked example: Linear system with parameter) For which a does the
following linear system have 0, 1 or infinitely many solutions? For each consistent case, find all
solutions.

T+ 3T9 — 223 =7
2.1'2—4373:8
x1 +5xg + (a® — T)a3 = a + 14

As usual, we first write it as an augmented matrix, and start doing the Gauss algorithm.

1 3 -2 7 1 3 -2 7 1 3 -2 7
-1 310

0 2 —4 8 — |0 2 —4 8 — |0 1 -2 4

1 5 a2—7|a+14 0 2 a®°—=5]a+7 0 2 a®>—=5la+7

1 3 -2 7 1 3 -2 7
0 1 -2 4 =10 1 -2 4
0 0 a2-1]a—1 0 0 (a—1)(a+1)|a—1

At this stage we have to consider separate cases: do we get a leading 1 in the third row or not?

IIT—21I1
—

o Case a = —1: In this case we have
1 3 -2| 7
01 -2 4
0 0 0 |-2

which is an inconsistent system: there are no solutions.
o Case a = 1: In this case the third row becomes a zero row:

1 3 —2|7 10 4]-5
01 —24|= [0 1 —2]| 4
00 010 00 010

So we can finish the Gauss-Jordan algorithm. So solutions here are

-5 —4
4 |+t 2 teR
0 1

o Case a # +1: In this case we can divide by a? — 1:

1 3 -2 7 L 1 3 =2 7 1 3 0|7+ 75
001 -2 | 4 |5 fo 1 —2f 4 [T 0 1 o044 2
00 a®>—1]a—1 00 1|5 00 1| 5
1 0 0 Ta+9 _ 34a+6
1-311 ot 4a+6 ot
— [0 1 0 i
1
0 0 1 T
So the unique solution is
T —ad —(5a +9)
— 4a+6 — 4
T2 TTI P a+6
T3 a1 1

D. Numbers of solutions

Now that we know how to solve a linear system using the Gauss-Jordan algorithm, let’s think
about how many solutions such a linear system can have.
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Proposition 2.28: (Solutions of homogeneous system)

A homogeneous linear system always has at least one solution: the zero vector.

If a homogeneous linear system has more than one solution, then it has infinitely many solu-
tions.

x1
PROOF. Let’s say our homogenous linear system has n variables, z1,..., x,. Let z =
In
Then we can write the homogeneous linear system as Az = 0 for some matrix A with n columns

and as many rows as our system has equations.
0

Setting = | : | = 0, the zero vector, is definitely a solution to Az = 0.

0
It could be that this is the only solution: this corresponds to the reduced row echelon form of A
having exactly n non-zero rows, each with it’s own leading 1, and then possibly some zero rows.

10 --- 0
01 --- 0
0 0 1
0 0 0
00 --- 0

Any other reduced row echelon form of a system with n variables can only have fewer columns with
leading 1s, so it will have at least one column which does not have a leading 1. Any such column
corresponds to a variable which can be assigned any value, which means the general solution has
a free parameter. So there are infinitely many solutions.

1 0 * e * 0 %
0 1 . 0 =
000 --- 01
000 --- 00
0o0O0 --- 000

Proposition 2.29: The solutions of a homogeneous linear system with n variables form a
subspace of R™.

PRrROOF. Let Ax = 0 be the linear system, so x € R™. We verify the three conditions for a
subspace, from Proposition 1.28.
o The zero vector is a solution of Az = 0 (see Prop. 2.28).
o If u, v € R™ are solutions, then Au = 0 and Av = 0. Then also A(u + v) = Au + Av =
0+ 0 = 0 because matrix multiplication is linear (Prop. 1.67).
o If u e R™ is a solution and A € R, then A(Au) = AAu = X0 = 0 as matrix multiplication
is linear.

So the solutions form a subspace of R™. O
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Proposition 2.30: (Homogeneous and inhomogeneous solutions)
Given a particular solution to an inhomogeneous linear system, then adding any solution of
the corresponding homogeneous linear system gives another solution.

PRrROOF. Let the inhomogeneous linear system be Ax = b, with b # 0. Suppose a is a particular
solution of this system, i.e. Aa = b, and that v is a solution to the corresponding homogeneous
system Ax = 0. Then

Ala+v)=Aa+Av=b+0=b

so a + v is also a solution to the inhomogeneous linear system. O
Proposition 2.31: (Solutions of inhomogeneous system)
An inhomogeneous linear system can have zero, one or infinitely many solutions.

Proor. If the inhomogeneous system is inconsistent, then it has zero solutions. This corres-
ponds to the row echelon form having a zero row with a non-zero entry in the augmented part.

* “ee * bl
0 * bg
00 -+ 0|bn#0

If the inhomogeneous system does have some solution, then we know that the corresponding homo-
geneous system has 1 or infinitely many solutions (Prop. 2.28), and that adding any of these to the
given one gives a new solution for the inhomogeneous system (Prop. 2.30). So the inhomogeneous
system has either one solution or infinitely many. These options correspond to the same reduced
row echelon forms as were given for the homogeneous systems, with the addition that any zero row
also has a zero in the augmented part.

10 -~ 0]b 10 % «++ % 0 % -|b
0 1 -+ 0]by 0 1 % -+« % 0 % - | by
0 0 by, 0 0O 0 1 b,
0 0 010 0 00 0 00 0
0 0 0]0 0 00 0 00 0

O

Examples 2.32: We have already seen examples of each of these three cases. Look back at them
now.

The above results allow us to answer the following questions:

Exercise 2.33:
Determine whether the statement is true or false.

¢ A homogeneous linear system in n unknowns whose corresponding augmented matrix has
a reduced row echelon form with r leading 1’s has n — r free parameters in the general
solution.

¢ All leading 1’s in a matrix in row echelon form must occur in different columns.

o If a homogeneous linear system of n equations in n unknowns has a corresponding aug-
mented matrix with a reduced row echelon form containing n leading 1’s, then the linear
system has only the trivial solution.
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o If the reduced row echelon form of the augmented matrix for a linear system has a row
of zeros, then the system must have infinitely many solutions.

o If a linear system has more unknowns than equations, then it must have infinitely many
solutions.

We will discuss this in lectures and write down explanations and /or examples and counterexamples.

The last one is important enough that we will want to refer to it, so let’s write it as a proposi-
tion.

Proposition 2.34: If a homogeneous linear system has more unknowns than equations, then
it has infinitely many solutions.

ProOF. Note that a homogeneous linear system cannot be inconsistent, so it has at least one
solution.
The system Ax = 0 has matrix of size m x n with m < n. So its row echelon form can have at
most m leading 1s, as each row can only have one leading 1. As m < n, this leaves some columns
in which there is no leading 1, which give us free parameters in the general solution. O

E. Linear Systems: Study guide

Concept review.
¢ Linear equation, linear system.
Homogeneous and inhomogeneous linear systems.
Solution to linear system.
Augmented matrix.
Matrix representation of linear system.
Diagonal, upper and lower triangular matrices.
Row echelon form and reduced row echelon form.
Elementary row operations.
Row equivalent matrices.
Gauss and Gauss-Jordan algorithms.
Numbers of solutions of linear systems.

Skills.

Determine whether an equation is linear.

Write a linear system into matrix form.

Determine whether a matrix is in row echelon form, or reduced row echelon form.
Perform elementary row operations on a matrix.

Perform the Gauss algorithm to bring a matrix into row echelon form.

Perform the Gauss-Jordan algorithm to bring a matrix into reduced row echelon form.
Write down the general solution for a linear system which is in reduced row echelon form.
Determine whether an inhomogeneous system is consistent or not.

Find solutions to linear systems using the above methods.

[ R R IR BRI O IR Bl

<&

<

GO0 0
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CHAPTER 3

Inverse Matrices and Determinants

If we have a single equation ax = b, with a, b real numbers, then we can solve it by dividing the
equation by a, as long as a # 0. We will now see what the equivalent is for matrices.

A. Inverse matrices

Definition 3.1: An inverse of a square matrix A is a matrix B of the same size such that
BA = I = AB, where [ is the identity matrix of the same size.

You can think of of this as being the equivalent of % ca=1=a- % for a real number a. However,
for matrices, % does not make any sense at all, so don’t write it!.

Notice that we need the matrix to be square so that we can multiply it with its inverse both ways
round to give the same size identity matrix each time.

Also notice that the condition is symmetrical in A and B, so we also say that A and B are inverses
of each other.

2

Exercise 3.2: Show that A = ( 35> and B = G’ 2) are inverses of each other.

Examples 3.3: o The inverse of an identity matrix is itself: IT = I.
o The inverse of a diagonal matrix with no zero entries on the diagonal is the diagonal
matrix with the reciprocal diagonal entries:

M 0O -0 /\% 0O --- 0 10 --- 0
0 X -+ 0 0 /\LZ e 0 01 --- 0
0o 0 - M\ o 0 --- i 00 --- 1

and the other way around. (Here A; # 0.)

¢ Not all matrices have an inverse: for example, a diagonal matrix with a zero row is not
invertible: there is no way we can get 0-something= 1.

o

A 2 x 2 matrix A = (a b) has inverse A~! = —1 ( ¢ _b):
c d W=\ —c a
a b d —b\ [ad—bc —ab+ab
¢ d)\-c a) \ed—cd —cb+ad
a b 1 d —b)y (1 0
C d ad — bC —C a - 0 1 )

and the same the other way around. Obviously this needs ad — bc # 0.
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Definition 3.4: A matrix is called invertible if it has an inverse. A matrix which is not
invertible is called singular. An invertible matrix is also called non-singular.

Note that only a square matrix can be invertible: if a matrix is not square, it is definitely not
invertible, as we defined an inverse only for square matrices.

Example 3.5: A 2 x 2 matrix (a
c

b
d) is invertible if and only if ad — be # 0.
For example,

1
o (2 2) is not invertible: ad — bc =6 — 6 = 0.

o (Z 3) is invertible: ad — bc = 63 — 8 # 0.

Proposition 3.6: (Uniqueness of inverses)
If a matriz has an inverse, then that inverse is unique.

PROOF. Suppose a matrix A has two inverses, B and C. Then

B = BI mult by identity matrix does not change it
= B(AC) as C' is an inverse
= (BA)C matrix mult is associative
=1IC as B is an inverse
=C

Because of this result, we say the inverse of A is A™!. So

AAT =T=A71A

This allows us to show
Proposition 3.7: (Properties of inverse)

(i) Every invertible matriz is the inverse of its inverse:
(A7) t=4
(ii) If A is invertible, then so is AT, and
(AT)—I _ (A_I)T.
(iii) (“Socks and shoes”) If two n x n matrices A and B are both invertible, then so is
their product AB, with inverse
(AB)"' =B71A L

PROOF. (i) By uniqueness of inverses and AA™! =1 = A7 A.
(ii) Taking transpose of these two equations gives
(AAHT =17, so (AHTAT =7,
and
(A1) =17, SO AT(AHT =T
So (A™Y)T satisfies the definition for the inverse of AT, so by uniqueness of inverses,

(AT)~1 = (AT
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(iii) We check whether B~1 A~ satisfies the definition of an inverse:
(AB)(B'A ™) = A(BB™H)A ' = ATA™ = AA ' =1
and (BT'A™Y(AB)=B YA 'A)B=B'IB=B"'B=1
So by uniqueness of inverses, (AB)™! = B~1A~L. O

Notice that for the inverse of a product, we have to change the order, as we did when forming the
transpose of a product. You can remember it this way:

If you first put your socks on and then your shoes, then to undo it you have to take your shoes off
first, and then your socks.
Let’s also record it as

The product of invertible matrices is invertible.

-1
1 2 1 (-1 -2
Example 3.8: o Inverse of inverse: = __ —
1 -1 3\-1 1
-1
2 1 2
1
- “3 3 1 -1

1
3
¢ Inverse of transpose: (

W= Wl
W

o Inverse of product: (
but

(2) 63 -

On the other hand

-1 -1

1 0 1 2 120(1 -1 =2\  1[-2 -4

0 2 1 -1/ 2\o 1 3J\-1 1) 6\-1 1)’
Exercise 3.9: o Use “socks and shoes” to show that if A is invertible, then for any natural

number k, AF is invertible with (AF)~! = (A=1)*.
This allows us to form negative powers of an invertible matrix:
Afk _ (Ak)fl _ (Afl)k
o Prove that if A is invertible, then for any A # 0, so is AA, with (AA)~! = 1 A4~1,

X
Some matrices are easily seen to be not invertible:
Proposition 3.10: If a matriz has a zero column, then it is not invertible.
1 T T
ProoF. Let A= |a; --- ap --- ay, |beasquare matrix with ay = 0, a zero column.
! ! !
Then for any matrix B of the same size, the product
1 T 1 1 T T
BA=|Ba; -+ Bay -+ Ba,|=|Ba; --- 0 --- Ba,
! ! ! ! ! !
also has a zero column, so it can never be the identity matrix. O
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Corollary 3.11: If a matriz has a zero row, then it is not invertible.

PROOF. Say A has a zero row. Then AT has a zero column, so AT is not invertible. But if A
were invertible, then AT would be too. But as A7 isn’t, A can’t be invertible either. a

Let’s think about inverses interact with the two “meanings” of matrices we have seen.

Definition 3.12: Given a function f: X — Y, the inverse of f is
a function f~1: Y — X such that f~!(f(z)) = z for all x € X and

X % Y
f(f~Y(y)) =y for all y € Y. We also write this as f~lof = idx and \ \
fof~! = idy, where idx and idy are the identity functions on X
and Y. X % Y
You can think of the inverse function as a function that “undoes” the original function. It has to

work both ways round though.
Not every function has an inverse.

Proposition 3.13: (Inverse matrix transformation)

If A is an invertible matriz, then the matrixz transformation of A= is R H R”
the inverse of the matrix transformation of A: T;l =Ty-1. \ \
PROOF. Suppose A is an n x n matrix. Then Ty-1(T4(v)) = A1 Av = R* ——R"

Iv =wvforany v e R", and Ta(T4-1(v)) = AA v = [v = vforany v e R*. O

How do invertible matrices interact with linear systems?

Proposition 3.14: A linear system Az = b with an invertible matriz A has a unique solution.

PROOF. As A is invertible, we can multiply the matrix equation Az = b by A~! on the left:

Ar=b>
& A" Ar =A""
= z=A"1
So this is the unique solution. O

Notice that this implies that if A is invertible, then Ax = b is consistent for any b.

Important!!! When you are dealing with matrix equations (including vectors), you have to specify
whether you multiply by a matrix on the left (of both sides of the equation) or on the right (of
both sides of the equation)! This is because matrix multiplication is not commutative: the order
matters.

Example 3.15: Given that A, B are invertible, and all matrices are n x n matrices, resolve for
X:

ABXA™'B=C
< A'ABXAT'B=A"1C multiply by A™! on the left
< XA™'B=B1tA"1C multiply by B! on the left
< XAt =p7tA"'cB™! multiply by B! on the right
= X =B 'A"lcB A multiply by A on the right

This result tells us something about the reduced row echelon form that an invertible matrix has:
it must have n leading 1s (if A is an n x n matrix), which makes it the identity matrix.
In fact, we can use this to calculate the inverse of a matrix.
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B. Inverse algorithm

We can calculate inverse matrices with the following algorithm.

The inverse algorithm applied to a square matrix A has the following steps:

o Write the matrix A and the identity matrix of the same size next to each other.

o Apply the Gauss-Jordan algorithm to A, and apply the same steps in the same order
to the identity matrix next to it.

o If the reduced row echelon form of A is the identity matrix, then the matrix next to
it is A7L.

We will have to prove that it really gives us the inverse, but let’s see it on some examples first.

1 2 3
Examples 3.16: We will calculate the inverse of A= [2 5 3
1 0 8
1 2 3 1 00
2 5 3 010
1 0 8 0 0 1
1 2 3 1 0 0
IT— 2L, 111 —1: 0o 1 -3 -2 1 0
0 -2 5 -1 0 1
1 2 3 1 0 0
ITT + 211 : 0 -3 -2 1 0
0 0 —1 -5 2 1
2 3 1 0 0
(=1)-1II: 01 -3 -2 1 0
0 0 1 5 -2 -1
1 20 -14 6 3
IT + 3111, 1 — 3111 : 01 0 13 -5 -3
0 0 1 5 =2 -1
1 00 —40 16 9
I—2II: 0 1 0 13 -5 -3
0 0 1 5 =2 -1
—40 16 9
SoA™t=[ 13 -5 -3
5 -2 -1

We should always check our answer: it’s very easy to make small numerical mistakes, and checking
will flag this up. Multiplying AA~! should give us I:

1 2 3\ /-40 16 9 —40+26+15 16—-10—-6 9-6-3 1 00
2 5 3 13 -5 -3|=1-80+65+15 32—-25—-6 18—-15-3|=(0 1 O
1 0 8 5 -2 -1 —40 + 40 16 — 16 9-8 0 01

So our answer is correct.
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1
Exercise 3.17: Use the inverse algorithm to compute the inverse of A = | 2
-1

N = O
D O

We have seen from the viewpoint of linear systems that if A is invertible, doing elementary row
operations in the Gauss-Jordan algorithm gives us the identity matrix. But why is the matrix on
the right the inverse?

To prove this, we need to link the elementary row operations to elementary matrices.

Definition 3.18: There are three types of elementary matrices, corresponding to element-
ary row operations.

o A diagonal matrix with 1s on the diagonal except for a A # 0 in the ith row,

10 0
0 A0 |,
6ol o

is obtained by multiplying the ith row of the identity matrix by A.
o A matrix with 1s on the diagonal and zeros everywhere else, except for the 1 in the
ith row being in column j and the 1 in the jth row being in column 4,
1.0 0 0

IR A
is obtained by swapping rows ¢ and j of the identity matrix.
¢ A matrix with 1s on the diagonal and also a A in position 4, j,
1.0 - 0 - 0

R SO S
corresponds to adding A\ times row j to row ¢ in the identity matrix.

Proposition 3.19: Multiplying a matriz on the left by an elementary matriz has the effect of
performing the corresponding elementary row operation to the matriz.

PROOF. Omitted. You can just try it out for 2 x 2 or 3 x 3 matrices. ([l

Exercise 3.20: Calculate the following:

1 0 3 1 2 3
1 0 2 1 0 1 1 2 3
o o 10 1 0|4 5 6
<O 4) (9 3) <1 0) (4 5 6)
0 0 1/J\7 8 9
1 0 0 01 0 1 0 0 a b ¢
Example 3.21: Let By = |0 1 0|, B =1 0 0|, E35=|0 1 0|, A=1]d e f
0 0 2 0 0 1 4 0 1 g h 1

FEy, E5, E3 are elementary matrices, and
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a b ¢ d e f a b c
EiA=1d e f|, EA=]a b c|, E3sA= d e f
29 2h 2 g h 1 g+4a h+4b i+4c

So when we do the elementary row operations in the inverse algorithm, we are multiplying A and
I successively with more and more elementary matrices on the left.

AT
E\A | Ei I
E2EyA | BBy T

|
By EyE\A | By EoEyl

When we are finished, we have (Ej---E9FE1)A = I on the left of the line, so the product
E,---EyE, = B is a very good candidate for A~!'. And we have this same matrix on the right of
the line: Ey, --- EoEqI = B.

To prove that this product of elementary matrices really is the inverse of A, we need either some
way of checking the product the other way round: is AB also = I?7 Or we need to argue in some
other way that we can be sure that B is the inverse of A. We can do this by proving that

Lemma 3.22: All elementary matrices are invertible.

PRrROOF. The inverse of an elementary matrix is the matrix corresponding to the inverse ele-
mentary row operation:

1 0 oy —1 1 0 0
0 Ao =0 g0 divide row i by A (A # 0)
0. 01 0 0 1
1 0 0 0\ 1 1 0 0 0
0 0 - 10 0 - 010
= 0ol self-inverse: swap rows again
0 100 0100
0 0 0 i O 0 i
1 0 0 0\ —1 1 0 0 0
0« 1 A 0 0 o 1 =X 0
=1 -0 0 e subtract A times row j from row ¢
0 0 1--0 0 0 i 0
0 - 0 0 1 00 0 1

So we can show

Proposition 3.23: (Inverse algorithm works)
The inverse algorithm really does produce the inverse of a matriz A, provided that the reduced
row echelon form of A is I.
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PROOF. The inverse algorithm
Al
E\A| EnI
EsEr\A | EsEqT

Ej - EyE\A | By EoEyl

produces a matrix B = Ey --- Es Ey with BA = I. Because every elementary matrix is invertible
(Lemma 3.22) and the product of invertible matrices is invertible (Prop. 3.7, “socks and shoes”),
the matrix B is invertible with B~* = E;'E; ' -+ B!, and so

BA=1
= B 'BA=DB"'I
= A=B"1
= A7l =B as B is the inverse of its inverse.

So indeed A~! = Ej, - -- E5Fy, which is the matrix we obtain on the right hand side of the line at
the end of the algorithm. |

We now have several conditions that tell us whether A is invertible.

Theorem 3.24: (Invertibility conditions)
For a square matriz A, the following are equivalent:
(i) A is invertible.
(i) Az =0 has only the trivial solution x = 0.
(11i) The reduced row echelon form of A is the identity I.
(iv) A is the product of elementary matrices.

PRrROOF. We will prove the implications in a circle: i=-ii=-iii =iv=-i. Then we automatically
also get the other implications such as iv=-iii and iii=i, by going two or three steps in the circle.

o i =>ii: We proved this already (Prop. 3.14): if A is invertible, then
Ar=0 = A '4z=4"1'0 = =z=0,

because any matrix times the zero vector gives the zero vector.

o ii =iil: If Az = 0 has only the trivial solution, then the proof of Prop. 2.28 (solutions
of homogeneous system) shows that the reduced row echelon form of A has n leading 1s,
where n is the number of variables. As A is a square matrix, this means the reduced row
echelon form of A is I,,.

o iii =iv: The Gauss-Jordan algorithm (or the inverse algorithm) produces Ej, - -+ EoE1 A
as the reduced row echelon form of A. If this is I, then Ej--- EsE1A = I, and so
A = E{'Ey'-- B, as all elementary matrices are invertible (Lemma 3.22). The
inverse of an elementary matrix is also an elementary matrix, so A is the product of
elementary matrices.

o iv=i: If A is the product of elementary matrices, then it is invertible: the product of

invertible matrices is invertible (Prop. 3.7, “socks and shoes”). O
1 6 4
Exercise 3.25: s A = 2 4 —1| invertible? Calculate it’s reduced row echelon form to
-1 2 5
check this.

The second statement, that Az = 0 only has the trivial solution, can also be interpreted in terms of
the matrix transformation T4 : R® — R"™: it tells us that only the zero vector z = 0 gets mapped
to 0. If you had two different vectors, v # w with Av = 0 = Aw, then there is no way to “undo”
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multiplication by A: if we tried to do A~'0, we would need to get v and w, which is not possible!
We will look more at this viewpoint in the second semester.

However, we can already use this theorem to show that actually, for a square matrix to be invertible,
we only have to check one way round if BA = [,,: this will automatically give us AB = I, as well.

Proposition 3.26: (Check one get one free for invertible matrices)
If A and B are n x n matrices with BA = I,,, then A is invertible with A~! = B.

PRrROOF. Suppose Av = 0 for some v € R". We want to show that then v = 0, so that A
satisfies one of the invertibility conditions (Theorem 3.24).
We have B(Av) = B0 = 0, but also (BA)v = I,v = v, so that v = 0. So Az = 0 has only the
trivial solution x = 0, so A is invertible.
Since A~! exists, multiplying BA = I,, by A~! on the right gives B = A~ ]

Corollary 3.27: If A and B are n x n matrices with AB = I, then A is invertible with
Al = B.

ProOOF. By “check one get on free for invertible matrices”, we get that B is invertible with
B~! = A. But then of course also A is invertible with A=! = B, see Prop. 3.7. ]

So it doesn’t matter which way round we check the multiplication in this case.

This result also gives us a partial converse to the result “a product of invertible matrices is invert-
ible”:

Proposition 3.28: (Invertible product)
If the product AB of two n x n matrices A and B is invertible, then both A and B are also
invertible.

PROOF. Let C' = (AB)~!. Then we have C(AB) = I,, = (AB)C. If we set D = BC, then
AD = I,,, so by “check one get one free for invertible matrices” (Prop. 3.26), A is invertible with
inverse D.

Similarly, setting £ = C'A gives EB = I,,, so B is invertible by “check one get one free”. O

Corollary 3.29: For n x n matrices A and B, we have

AB is invertible — A and B are invertible.

Let’s also record all implications an invertible matrix has on a linear system.

Theorem 3.30: (Invertible linear system)
Given a square matriz A, the following are equivalent:
(i) A is invertible.
(ii) The homogeneous linear system Ax = 0 has only the trivial solution x = 0.
(i1i) The inhomogeneous linear system Ax = b is consistent for any b € R™.
(iv) The inhomogeneous linear system Ax = b has exactly one solution for any b € R™.

PRrROOF. We have already proved i <ii. We will now prove i =iv =iii =1i.
¢ i =iv: This is Proposition 3.14:
Ar=b = A 'Az=4""
giving the unique solution z = A~'b.

o iv =iii: If the system Ax = b has a unique solution, then it has some solution, so it is
consistent.
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o ili=i: We will construct an inverse for A from solutions to several different inhomogeneous
systems Az = b.

1 0 0
0 1 0
Let e; = ? , g = ? ,..oen = [ : |. Then we can find solutions 1, a,...,Z,
0 0 ?
1 1 1
to the linear systems Ax = ey, Ar =ey, ..., Ar =¢e,. Let B= |2y - x -+ x,
! l !
be the matrix with these solutions as columns. Then
1 1 1 1 1 1
AB: Axl ce Axk “ e Aajn = 61 e ek e en =I’I’L
! l l l ! l
So by “check one get one free for invertible matrices” (Prop. 3.26), A is invertible. O

C. Inverse matrices: Study guide

Concept review.

Inverse of a matrix.

Invertible, non-singular, singular matrices.

Inverse of a 2 x 2 matrix.

Uniqueness of inverse.

Inverse of inverse, inverse of transpose, inverse of product.
Negative integer powers of an invertible matrix.

Inverse matrix transformation.

Linear system with invertible matrix.

Inverse algorithm.

Elementary matrices.

Invertibility conditions: equivalent conditions for a matrix to be invertible.
Check one get one free for inverse matrices.

<

[ R R R IR IO R R IR R

Skills.

Find the inverse of a 2 x 2 matrix.

Use the definition of an inverse (and uniqueness of inverses) to prove properties of inverses.
Determine elementary matrices corresponding to a given elementary row operation.

Use the inverse algorithm to determine whether a matrix is invertible, and to calculate
it’s inverse.

Solve a linear system using inverse matrices.

SO0 OO

<&

D. Determinant of a 2 x 2 matrix

a b
When introducing inverses, we saw that a 2 x 2 matrix is invertible if and only if ad—bc # 0.
c

This is a useful quantity, which also comes back in the formula for the inverse of a 2 x 2 matrix.

Cc

Examples 3.32: ¢ det L =3-32=-29 o det o =21 o det a b =
8 3 0 3 2a  2b

2ab —2ab =0

Definition 3.31: The determinant of a 2 x 2 matrix A = (a Z) is det A = ad — be.
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DETERMINANT OF A 2 X 2 MATRIX

This determinant has a geometric significance:

0 1
Fact 3.33: Consider the square with corners <0> , <O> , (

transform this square using the matrix transformation T4, then the resulting quadrilateral has area
det A. Here a negative determinant signifies that the orientation of the corners round the square

has been reversed.

Examples 3.34:

[ cos(0)
A= (sin(@)

The vectors

—sin(6)
cos(6)

(o) 6)-6)-C)

get mapped to

<0> (cos(@)) (cos(é))sin(@)) (sin(@))l
0/ \sin(d) ) \sin(d) +cos(d) )’ \ cos(d)

This represents the same square rotated by 6.

> has det A = cos?(f) +sin*(f) = 1.

) , (?) This has area 1. If we

sin(0) + cos(d)
(0
1
—sin(@ 0:5
cos(f)

(cos(@) — sin(0)

-0:5

You can change the angle and see what happens in GeoGebra:

https://www.geogebra.org/graphing/yt8v8cdq

3

A= has det A = 12. This map scales everything

in the z-direction by 3 and everything in the y-direction by
4, so the unit square gets mapped to

o) 6)-C)- C)

so we get a rectangle with area 12.

3
0 -2
corresponds to the orientation of the square being reversed.

A= has negative determinant det A = —6. This

1 2
A= (0 1) is a shear: det A = 1, the area stays the

same, the square just gets transformed into a parallelogram.
You can imagine the square being made up out of lots of
horizontal sheets of paper, and then you gently push the
stack so that they slip sideways.

So we have already seen that

Proposition 3.35: A 2 x 2 matriz A is invertible if and only if det A # 0.
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c

1 d -b a b\ 1 da — bc db—bd \ (1 0
detA \—c a c d] detA\—-ca+ac —ecb+ad] \0O 1)°
So A has an inverse.

Conversely, if det A = ad — bc = 0, then ad = be, so

PROOF. Let A = (a Z) If det A = ad — be # 0, then

o either A has a zero row or zero column, and so it is not invertible (Prop. 3.10 and

Corollary 3.11),

© or % = £, so multiplying the first row by this number gives the second row. This means

that the row echelon form has a zero row, so the matrix is not invertible. |

This determinant satisfies the following properties:

Formula 3.36: (Properties of 2 x 2 determinants)

(1) det ra b — rad —rcb = rdet | © b ;
rc d c d

b b b
@) det [T °) = (at2)d—b(ct2) = ad—betzd—bz = det [ ¢ ° | +det [©
c+z d c d z d
(3) det b a =bc — ad = —(ad — bc) = —det a b .
d c c d
1
(4) det (1) =

Our aim now is to define the determinant of arbitrary n x m matrices such that A is invertible if
and only if the determinant is non—zero. We want this determinant of an n x n matrix to have the
same properties as we’ve just written down for the 2 x 2 determinant.

E. Determinants by cofactor expansion

Definition 3.37: (Cofactor expansion across first row) Let A = (a,;) be a n x n-matrix,
n = 2. The determinant of A is defined by

det A = Z a1j<—1)1+j det(A\lj),
j=1
where ﬁij is the matrix one gets by deleting the i—th row and the j—th column of A.

The determinant of the matrix A;; is called the minor of entry a;; and (—1)"*J det(//l\ij) is
called the cofactor of entry a;;.

The hat is often used when we leave out something, so in /Alij we leave out row ¢ and column j.
Note that we introduce the determinant inductively: the determinant of a 3 x 3 matrix is by defini-
tion given by a linear combination of determinants of 2 x 2 matrices, which we have already defined.
Similarly, the determinant of an n x n matrix can be computed if one knows the determinant of
n — 1 x n — 1 matrices.
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Notation 3.38: When we write out a matrix with it’s entries, we often use vertical lines to denote

determinant:
b b
det “ — |
c d c d
a b ¢ a b ¢
det |d e f|l=1|d e f
g h 1 g h 1
ailr - Qln a1 QGln
det| @ - 1 |=
an1 e Ann an1 e Ann

We don’t use this notation when giving the matrix a name! So we write det A not |A]|.

Example 3.39: In the 3 x 3 case, we get

a b c
def=a-ef—b-df+c~de

: h 1 g 1 g h
g h i

Example 3.40: We will look at two 3 x 3 examples.

1 5 0
a) Let A=12 4 —1]. Then
0 -2 0

and

3
det A = Z (=)' ay; det ﬁlj

j=
= (—1)1+1 a1 detﬁll +(—1)1+2 ai12 detﬁlg + (—1)1+3 ai13 det;llg

RN Vo S~ N~ RN
=1 =1 =—1 =5 =1 =0
4 -1 2 —1 2 4
=1-1- +(=1)-5- +1-0-
-2 0 0 O 0 -2

=-2-5.-0+0=-2.
b) The determinant of

3 1 0
A=]|-2 -4 3
5 4 -2
by definition is
detA—3. [t 3172 302 Yo
—2 5 -2 5 4

The term determinant was first introduced by the German mathematician Carl Friedrich
Gauss in 1801 (see Section 2.1 in the WileyPLUS book), who used them to “determine”
properties of certain kinds of functions. The term minor is apparently due to the English
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mathematician James Sylvester (see Section 2.1 in the WileyPLUS book), who wrote the
following in a paper published in 1850: “Now conceive any one line and any one column be
struck out, we get... a square, one term less in breadth and depth than the original square; and
by varying in every possible selection of the line and column excluded, we obtain, supposing
the original square to consist of n lines and n columns, n? such minor squares, each of which
will represent what I term a ‘First Minor Determinant’ relative to the principal or complete
determinant.”

Cofactor expansion is not the only method for expressing the determinant of a matrix in
terms of determinants of lower order. For example, although it is not well known, the English
mathematician Charles Dodgson, who was the author of Alice’s Adventures in Wonderland
and Through the Looking Glass under the pen name of Lewis Carroll, invented such a method,
called “condensation.” That method has recently been resurrected from obscurity because of
its suitability for parallel processing on computers.

Instead of expanding along the first row, we can also expand along any other row, or even along
any column.

Proposition 3.41: (General cofactor expansions)
Let A = (a;5) be a n x n-matriz, n = 2. Then

det A = Z (—1)*ay; det(ﬁij) for any @ (expand in Tow i)

fury

<

(=1)*ay; det(ﬁij) for any j (expand in column j)

I

=1

PROOF. Omited here. The fact is that these are all equal to a formula which gives a big
alternating sum of products of entries of A, which involves some concepts we cannot cover in this
course. ]

Slogan: The determinant of A is formed by taking all possible products of entries with exactly one
from each row and each column, and adding them all together with plus or minus.

1 5 0
Example 3.42: Compute the cofactor expansion of A= |2 4 —1 | across the 3" column:
0 -2 0
2 4 1 5 15
det A = (-1)'*3.0- +(=1)%%3 . (=1) - +(=1)3%3.0.
R T Bl I E G Vo BY GV I E GV T Y

So we see this can be very useful: we can make our work easier by picking rows or columns which
have a lot of zeros in them.

Proposition 3.43: If A contains a zero row or a zero column then det A = 0.

PrROOF. Expand across the zero row or the zero column. O

As another useful consequence of the expansion across rows we get an easy formula to compute
determinants of 3 x 3—matrices:
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Formula 3.44: (Garden fence rule for 3 x 3 matrices)
ail @iz Qi3
det [ a21 a2 ag3 | = a11a22a33 + a12a23a31 + A13a21a32 — A31a22013 — A32023011 — (33021012

as; Qazz2 ass

Exercise 3.45: Verify this formula by expanding along the first row.

144 I 2 ¥ ™
Wy Ay Oy _ tyy 013 f1|_ i
U = thag (] G [ G} i

& a, (753 dxs  Had ty|  Hap

- & -, -,

FIGURE 1. “garden fence” rule for 2 x 2 and 3 x 3 determinants,

Be aware that these simple methods only work for 2 x 2 and 3 x 3 matrices. For matrices of larger
size there is no simple rule.

You can see here also the idea of “take one entry from each row and each column, take their
product, and then add it all up, some with plus and some with minus”. It just happens that for
bigger matrices, that idea doesn’t come out in as nice a pattern as this garden fence rule.

F. Properties of determinant

Because we can expand along rows or columns, transposing a matrix does not change the determ-
inant:

Proposition 3.46: (Determinant of transpose)
Let A e My,n. Then
det AT = det A

PROOF. Since we can calculate the determinant by expanding in a row or a column, we get
the same answer if we expand det AT in row 1 and det A in column 1, say. O

We can now show that the properties we calculated for 2 x 2 determinants also hold for a determ-
inant of a n x n matrix:

Proposition 3.47: (Properties of determinant)
Let ay, ... ,a, and by be columns of n x n matrices (i.e. vectors in R™), and af, ..., al, and b
rows of n x n matrices. Then

(i) “scalar multiple comes out of a column or a row”:

1 T 1 T 1 T
det<a1 o Aag oo an> = Adet(flil alk aln) and

) ! l
<« a'1 — «— a'l —
det| < Afz;c - | = Adet| « a.;C -

! !’
— a, — — a, —

(i) determinant is linear in columns and rows:

1 1 1 1 1 1 1 1 1
det<a1 coap+bg e an) = det(al R an) “F det<a1 coo oy o an>and
! ) ! b ! ! ! ! )
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«— a; — «— a,/l — «— a,ll —

det | « aj+b, —» | =det| < af — [+ det| < b}, —
7 7 7

«— ., — — a, — — a, —

(iii) swapping columns or rows introduces a minus sign:
det(‘lTl aTk UTL aTn) = —det(aTl UTL aTk an> and
! ! ! ! ! !

b U
«— a,ll — «— {1/1 —
'/ ’I
<~ ap — — a; —
det = —det
«— a,; — «— a;c —
«— a,/n — «— a’n —

(v) a matriz with two columns or rows the same has determinant 0:

<—a/1—>

«— a;c —
1 1 T 1
det(al ceap eoag an) =0 and det o =0
! U b !

<—a;c—>

7
— a, —

(v) adding multiple of another column or row to a given column or row doesn’t change the

determinant:

1 1 T 1 T 1 T 1

det| a1 - ap+ra; - a; - an | = det(m TR TAREE an)and
! ! J U ! ! I !
«— a/l — «— a’l —
— a'kJr.)\aE — — a.;c —

det = det
«— a; — — a; —
«— a’ =l «> a"’n —

(vi) det I, = 1.

PROOF. (i) You can do this by induction, or by choosing the right column/row to expand
in.

1 1 ) 1 T T . .
Let A = (af af al) and B = (all )\Tk, af)’ ie. by = Aajg fori = 1,...,n.
Then we expand in column k:

det B = Z (—1)"*by det(Byy,)
i=1

= 2 (=1 Nas det(A)
j=1

= Adet A.

For rows, this follows by det A7 = det A, Proposition 3.46. (Or we expand in the row
instead.)
(ii) Exercise. Expand in row/column k.
(iii) (Stretch yourself Exercise). Can prove by induction and expanding in a row/column that is
not one of the two we’ve swapped.
(iv) Follows from (iii): if two columns are the same, swapping them introduces a minus sign but
also keeps the matrix the same.
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(v) Combine (i), (ii) and (iv).
(vi) We compute the determinant of the identity matrix I, = (a;;) as

n
det In = (—1)1+1 ail det In—l + Z(—1)1+j aij (In)lj
~ j=2 ~~
=1 =0

:1-detln_1:...:det12:1. U

The previous result shows how in some circumstances we can decompose a determinant into a sum
of two determinants.
However, in general, the determinant of a sum of square matrices is not the sum of the determinants:

N O e Py

have determinants det A = 1,det B = 5 so that det A + det B = 6 but
A+ B = (0 0)
2 0

Remark 3.48: In fact, the determinant is uniquely determined by the following properties:
A map det: 4, , — R sending A — det A is called determinant if the following holds:

has determinant det(A + B) = 0 & 6.

(1) det is linear in each column. That is, if a; are columns:

(1) det(ala ceey Qg—1, 0 + bk‘7a’k‘+17 B an) =
det(ay,...,ak—1,0k, Qks1,--.,0n) +det(ar, ..., ak—1,bk, axt1,-..,0n)
(ii) det(aq,...,ax—1,7ak, Qkt1,--.,an) = rdet(ar,...,ap_1,0k,...,0,)
(2) det is alternating: swapping two columns introduces a minus sign:
det(a/la sy Qk—1, 0k, Q415 - -+, A1—1, AL, QL 41, - - - aan) =
- det(ala sy Qk—1,01, Qk4+1y - -+, A1—1, Qf, Ql4+1, - - - 7an)

(3) detI,, = 1.

Proposition 3.49: (Determinant of upper triangular)
If A is upper triangular, i.e, if

aj; % *
e 0

*

0 0 apn

then
det A = aj1a9y ... ann-

A similar statement holds for lower triangular matrices.

ProoOF. Expand across the first column:

az2 ¥ ... *

detA=a11 det 0 ’ ) =...=011022...0Qpn-
. ok
0 ... 0 ann

O

In general, expansion across rows or columns is not a useful tool to calculate a determinant. Apply
this method only in the case that the matrix contains rows/columns with lots of zeros.
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G. Evaluating determinants by row reduction

In this section we will show how to evaluate a determinant by reducing the associated matrix to
row echelon form. In general, this method requires less computation than cofactor expansion and
hence is the method of choice for large matrices, .

Proposition 3.50: (Determinants of elementary matrices)
Let E € My, be an elementary matriz. Then

(i) If E results from multiplying a row of I,, by a non-zero scalar A, then det(E) = \.
(ii) If E results from interchanging two rows of I, then det E = —1.
(iii) If E results from adding a multiple of one row of I,, to another, then det E = 1.

ProoF. This follows immediately from Proposition 3.47. ]

So, more visually:

10 0 0 10 00
0 - 0 i 0 0 - 1 Ao 0
det] o A of|l=AX\ det =-1 det] - - =1
.. 0 - 1 0 0 0 - 0 i 0
0 01
0 0 01 0 o 0 0 1

In particular, all elementary matrices have non-zero determinant.
Using this, we can rewrite some parts of Proposition 3.47 in terms of elementary matrices:

Proposition 3.51: (Determinant preserves product with elementary matrices.)
Let E be an elementary matriz, and A an n X n matrix.

(i) If E multiplies a row with X\ € R then
Adet A = det(EA) = det E det A.
(i) If E interchanges rows then
—det A = det(EFA) = det Edet A.
(iii) If E adds a multiple of one row to another row then
det A = det(EA) = det E det A.

PrROOF. Recall from Prop. 3.19 that calculating F A has the effect of applying the element-
ary row operation corresponding to E to the matrix A. So this follows from the properties of
determinant given in Proposition 3.47. ]

Thus: if we only apply elementary row operations then we have control over the determinant!
Therefore, we can use row reduction to compute the determinant of a matrix.

Example 3.52:

1 2 3 3 L s

0 2 4" 10/ =3 =6
2 6

00 3 3

\_\f_/
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3
2/ =2-3 Take the factor 2 out of second row
3

0 2
1 2

=6

o O = o O =
O N NO NN
W b W W ke Ww

Even with today’s fastest computers it would take millions of years to calculate a determinant of
matrix of size 25 x 25, unless it is very sparsely filled. Methods based on row reduction are often
used for large determinants.

Example 3.53: To evaluate det A where

0 1 5
A= -6 9,
2 6
we use row reduction:
3 -6 9 1 -2 3
detA™ o 1 52300 1 5

2 6 1 2 6 1

1 -2 3 1 -2 3
U3l 1 5 | MEM3l0 1 5 | = (=3)(=55) = 165

0 10 -5 0 0 -55

where we used that the determinant of an upper triangular matrix is given as the product of the
diagonal entries.

H. Determinant of a matrix product

Considering the complexity of the formulas for determinants and matrix multiplication, it would
seem unlikely that a simple relationship should exist between them. This is what makes the
simplicity of our next result so surprising. We will show that if A and B are square matrices of
the same size, then det(AB) = det A det B.
We already know from Proposition 3.51 that the product is preserved if one of the matrices is an
elementary matrix:

If E,B e #,, and E is an elementary matrix, then

det(EB) = det E det B.
So applying that several times we get:

Corollary 3.54: If B € My, and En, ..., E, € My, are elementary matrices, then
det(E1Es ... E.B) = det(E7) . ..det(E,) det(B).

In particular,

Theorem 3.55: A square matriz A is invertible if and only if det A £ 0.

PROOF. Let R be the reduced row echelon form of A and Fj,..., E, the elementary matrices
which give R = F; ... E.A. By the previous theorem we have

det(R) = det(E) ... det(E,) det(A).
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Since elementary matrices have non-zero determinant we see that det R = 0 if and only if det A = 0.
Now, if A is invertible then R = I, and det A % 0 since det I, =1 # 0.

Conversely, if det A # 0 then det R + 0 which tells us that R cannot have a row of zeros. Thus,
R = I,, and hence A is invertible. O

So we can add this to our list of equivalent invertibility conditions:

Theorem 3.56: (Invertibility conditions)
For a square matrixz A, the following are equivalent:
(i) A is invertible.
(i) Az =0 has only the trivial solution x = 0.
(#1) The reduced row echelon form of A is the identity I.
(iv) A is the product of elementary matrices.
(v) det A # 0.

We are now ready for the main result concerning products of matrices.

Theorem 3.57: If A, B € M, then
det(AB) = det(A) det(B) .

PROOF. We divide the proof into two cases that depend whether or not A is invertible.
If A is singular then by Corollary 3.29 we see that AB is singular: if AB were invertible, then A
would also be invertible. Thus by the previous theorem det(A) = det(AB) = 0 which shows the
statement in this case.
If A is invertible, then A is the product of elementary matrices F1,..., E,.. Thus

det(AB) = det(F; ... E.B) = det(E1)...det(E,) det(B) = det(A) det(B). O

In 1815 the great French mathematician Augustin Cauchy published a landmark paper in
which he gave the first systematic and modern treatment of determinants. It was in that
paper that Theorem 3.57 was stated and proved in full generality for the first time. Special
cases of the theorem had been stated and proved earlier, but it was Cauchy who made the
final jump.

Example 3.58: Given
Ao (31 ., B= -1 and  AB— |2 3 ,
2 1 5 8 17 14

detA=3—-2=1,
det B = —8 — 15 — —23,
det(AB) =28 — 51 = —23 = det A - det B.

we have

Proposition 3.59: If A is invertible, then
1

det(A’l) = ot A

PROOF. Since A~'A = I,, we have
det(A™1) det(A) = det(I,) = 1
which shows the result. O
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I. Determinants: Study guide

Concept review.

<

L R R R R R SRR

<

Determinant

Minor

Cofactor

Cofactor expansion

Properties of determinant

The effect of elementary row operations on the value of a determinant.
The determinants of the three types of elementary matrices.
Determinant test for invertibility.

Determinant of product.

Determinant of inverse.

Skills.

o
<

Use cofactor expansion to evaluate the determinant of a square matrix.
Use the garden fence rule to evaluate the determinant of a 2 x 2 or 3 x 3 matrix.

Find the determinant of a matrix which contains a zero row or column.

Find the determinant of an upper triangular, lower triangular, diagonal matrix by inspec-
tion.

Find the determinant of a transpose matrix.

Use row reduction to evaluate the determinant of a matrix.

Combine the use of row reduction and cofactor expansion to evaluate the determinant of
a matrix.

Use the determinant to test a matrix for invertibility.

Compute the determinant of products.

Compute the determinant of an inverse.
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CHAPTER 4

Vector Spaces

A. Vector space axioms and examples

Recall from Chapter 1 that the set R™ of all vectors with n real entries satisfies certain conditions
that make it a vector space. We will now look at these conditions again and see more examples of
such real vector spaces.

Definition 4.1: A real vector space is a set V equipped with addition and scalar multi-
plication by real numbers, satisfying the following axioms: for any u, v, we V and A, p e R,

VAO u+veV (closure under addition)
VA1 There exists a zero vector 0 € V which satisfies v + 0 =v = 0 + v. (zero vector)
VA2 There are negative vectors satisfying v + (—v) = 0 = (—v) + v.  (negative vectors)
VA3 (u+v) +w=u+ (v+w) (associativity of addition)
VAd u+v=v+u (commutativity of addition)
SMO v eV (closure under scalar multiplication)
SM1 1-v=w (unit scalar)
SM2 A (uv) = (A pv (associativity of scalar mult)
SM3 (A + u) v=Av+ uv (distributivity of scalar mult over real addition)
SM4 A(u +v) = Au+ Av (distribuitivity of scalar mult over vector addition)

A vector is defined to be an element of a vector space.

Examples 4.2: o We have seen that for any natural number n, R™ is a vector space, where
vector addition and scalar multiplication is defined entry-wise.
¢ We have seen that the set of m x n matrices .#,, , is a vector space, where addition and
scalar multiplication is also defined entry-wise.
¢ Consider the set P, of real polynomials of degree less than or equal to n. So a general
such polynomial is ag + a1 + asx® + azx3 + - - - + a,z™, with real coefficients a, € R. (Note
that the coefficients are allowed to be 0, so this includes polynomials of smaller degree.)
Given two such polynomials p = ag+a1x+ -+ ap,x™ and ¢ = by + b1z + - - - + byx™,
we can add them:

p+q=(ap+bo)+ (a1 + b1)x + - + (an + by)z"

which is another polynomial of degree at most n. So VAQ is satisfied: p + q € P,.

The zero polynomial 0 = 0 + 0z + 022 + - - - + 02" satisfies 0 +p = 0 = p + 0 for any
other polynomial p € P,,. So VA1 is satisfied.

Given a polynomial p, —p is also a polynomial of the same degree as p, so VA2 is
satisfied.

It is easy to check that VA3 and VA4 also hold.

Given a polynomial p as above and a real number A € R, then

Ap = (Aag) + (Nar)z + (Aaz)z® + - + (Aay, )™

is another polynomial of degree at most n, so SMO holds. It is then also easy to check
that SM1-SM4 hold as well. E.g., for SM2:
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A (up) = A+ ((nao) + (par)z + (pag)z® + - - + (pan)z™)
= (Apao) + (Muay)x + (Apag)x? + -+ + (Apa, )z"
= (Awp

So the set P, of polynomials of degree at most n forms a vector space.
o If we take just the set of polynomials of degree exactly n, they do not form a vector space:
For example,
(3422 +52%) + (2 + 2 —52%) =5+ 3z
the sum of two degree 3 polynomials might have smaller degree. So VAO is not satisfied.
o Let C[0, 1] be the set of continuous functions from [0, 1] — R, i.e. real valued continuous
functions on the interval [0, 1]. We can add such functions pointwise, meaning (f+g)(z) =
f(z) + g(x), and we can multiply such a function by a scalar: (Af)(z) = A- f(z). Then:
+ The sum of two continuous functions is again continuous, so VAO holds.
- The zero function f(x) = 0 is continuous, and satisfies VA1.
- If f is continuous, then so is Af for any real number A, so SMO is satisfied. Taking
A = —1 gives a function which satisfies VA2.
- VA3 and VA4, and SM1-4, can be easily checked. For example, SM3: To check two
functions [0,1] — R are equal, we have to check that they do the same thing on
each z € [0,1]:

(A+ @) =N+ p) - flz) =X flz)+p- f(z)

and
A+ pf)@) = (Af)(@) + (pf)(@) = A flz) +p- f(z)

So (A+u)f =AM+ uf.

o Let V be the set of all infinite real sequences, with entry-wise addition and scalar mul-
tiplication. Le. (a;); + (b;); = (a; + b;)s, and A(a;); = (Aa;);. This also forms a vector
space.

o If we take the set P of all real polynomials (regardless of degree), then we also get a
vector space.

As you can see in these examples, the way you prove that some given set with two operations is a
vector space is the following:

o Identify the set V' whose elements are the vectors.

o Identify the operations of addition and scalar multiplication. (IL.e. how are these
defined in your example of V'7)

o Verify that these operations satisfy VAO and SM0. We then say that V is closed
under addition and scalar multiplication.

o Verify that there is a zero vector (i.e. VA1) and that there are negative vectors (i.e.
VA2).

o Verify all the other axioms.

Exercise 4.3: Show that the last two examples, infinite sequences and all polynomials, form a
vector space.

We can have some slightly stranger vector spaces:

Example 4.4: (Unusual vector space) Let V = R*, the set of positive real numbers, and let
w4 v =u-v,ie. vector addition is multiplication of the real numbers, and let Au = u?, i.e. scalar
multiplication is exponentiation.

So, for example 1 + 1 =1l and 2-1 =12 =1,

Is this a vector space?

o We have identified the set V' and the two operations.
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o If u,v are positive real numbers, then their vector sum v + v = u - v is again a positive
real number. So VAO holds.

o If w is a positive real number, then A\ - u = u
number. So SMO holds.

¢ The “zero vector” is the number 1: 1 +u=1-u=u,andu+1=u-1=u.

o “Negative vectors” are the reciprocals: u + % =u- % = 1, the zero vector.

¢ VA3 and VA4 hold, because for multiplication of real numbers we have (u-v)-w = u-(v-w),
and u-v =v-u.

o SM1: 1-v =o' = v so this is true.

o SM2: - () = (uv)* = (v*)* = v** = (Au)v by rules of indices.

o SM3: (A4 p)v = v*MH = v vk = (W) + (uv) by rules of indices and definition of vector
addition.

o SM4: ANu+v) = (u-v)) = vt -0 = () + ().

So this is a vector space!

A any power of u, is also a positive real

Example 4.5: Let V = R? with the usual vector addition, but define scalar multiplication like

this: for v = <U1> e R? and A € R, let
U2

Is this also a vector space?

o We have identified the set V, and the operations: vector addition as usual, and scalar
multiplication as above.

o We verify VAO: <”1> ¥ <w1> - (”1 +w1> € R2. And SMO: \v — (M’l) e R2,
Vo (D) V2 + Wo 0

0
o As the vector addition is the usual one, the zero vector 0 = 0 satisfies VA1. Similarly,
—v=[ ") satisfies VA2.
— Uy

o Let’s try to verify the other axioms:
VA3 and VA4 only involve vector addition, and that is the same as for the normal
R2, so they hold.

SM1: 1-v = (%) # v so SM1 does not hold.
So this is not a vector space!

The point of defining such an abstract structure is that we can use just those axioms to prove
things that will hold for any example of a vector space. For example, zero vectors and negative
vectors behave as we expect them to:

Proposition 4.6: (Zeros and negatives in vector spaces)
Let V' be a vector space. Then

(i) The zero vector is unique.
(i) For anyveV, Ov = 0: zero times any vector gives the zero vector.
(iii) For any A € R, X0 = 0: any multiple of the zero vector is still the zero vector.
() If W =0, then either \=0€R, orv=0€ V.
(v) For any v €V, the negative —v is unique.
(vi) For anyv eV, (—1)v = —v, the negative of v.

You can view this as lots of examples on how we use axioms to prove simple statements.
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ProoOF. We don’t know anything about V' except that it satisfies the axioms VA0-4 and SMO-
4. So in our proofs, that is the only thing we can use. We will record carefully which axioms are
used where.

(i) Suppose we have two zero vectors 0 and 0’ which both satisfy Axiom VA1l. Then

0=0+0 using VA1 for 0
=0 using VA1 for 0
(ii) We have
v=1v using SM1, unit scalar
=(1+40)-v calculating in R
=1-v+0-v using SM3, distributivity
=v+0-v using SM1, unit scalar
=, (—v)+v=(-v)+(v+0-0) adding —v to both sides
< (—v)+v=((-v)+v)+0-v using VA3, associativity
< 0=0+0-v using VA2, negative vectors
= 0=0-v using VA1, zero vector

(iii) Exercise. There are different ways you can do this: using 0 + 0 = 0 and the existence of
negative vectors (i.e. using VA1 and VA2, with ideas similar to ii), or using vi.

(iv) If A = 0 then we are done. Suppose A # 0. So we want to show that v = 0. As A # 0, we
have % eR. So

v=1-v using SM1, unit scalar
1
— (X)\) v calculating in R
1
= X()\U) using SM2
1
3 0 by assumption: Av =0
=0 using iii

(v) Suppose a given v € V has two negatives: u and w. Sov+w =0 = w+v and v+u = 0 = u+v,
i.e. both u and w satisfy VA2 for v. Then

u=u+0 using VA1, zero vector
=u+ (v+w) using VA2 with w
=(u+v)+w using VA3, associativity
=0+w using VA2 with u
=w using VA1, zero vector.
So u = w = —wv, the negative is unique.

This is exactly the same proof as “inverse matrices are unique”. This is because negatives
are the “inverse with respect to addition”.
(vi) We have

v+ (=1 v=1-v+(-1)-v using SM1, unit scalar
=1+(-1)-v using SM3, distributivity
=0-v calculating in R
=0 using ii

Similarly (—=1)-v 4+ v = 0. So (—1) - v satisfies the condition to be the negative of v, so by
uniqueness of negatives, (—1)v = —wv. a

This result tells us that the following example is possible:
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Example 4.7: The smallest possible vector space is the zero vector space: 0 = {0}. It has only
one vector in it, the zero vector. It is closed under vector addition because 0 + 0 = 0 by VA1. It
is closed under scalar multiplication, because A -0 = 0, by Proposition 4.6iii. All the other axioms
are easy to check, because we have just one vector.

B. Subspaces

We already saw in Chapter 1 that the vector space R™ can have subspaces: smaller vector spaces
that are inside R™. We will recap the definition, now applying it to any vector space V', not just
R™.

Definition 4.8: Let V be a vector space. A subspace of V is a subset W < V that is also a
vector space, with the same vector addition and scalar multiplication as V. We write W < V
when W is a subspace of V.

Examples 4.9: o Every vector space V has the zero space as a subspace, and itself as a
subspace.

oV and V<V

o We have seen subspaces such as
1

€2

r1,Ts,x3 €R <R4
T3

and

T3 T1,%0,23 €ER <R5
Ty — X2

3%3

¢ As mentioned above, the set containing only 0 is a subspace of R with usual addition,
and usual multiplication as scalar multiplication. (Le. viewing R as R!, vectors with one
entry.)

o The “unusual vector space” R* with w + v = u-v and A = v* is not a subspace of
R: while positive real numbers are a subset of all real numbers, the vector addition and
scalar multiplication are not the same in the two vector spaces.

¢ In fact the only subspaces of R are 0 and R: if a subspace W < R has some element
we W, w # 0, then as W is closed under scalar multiplication, we get % cw=1eW.
Then for any z € R, we get -1 € W, so W is all of R.

Proposition 4.10: (Subspace conditions)
A subset W €V of a vector space V is a subspace if and only if it satisfies:

o 0eW (zero vector is in the set)
o foranyu,veW, u+veW (closed under vector addition)
o foranyveW and any N\e R, \ve W (closed under scalar mult)

PROOF. If we check these three, then we automatically get negative vectors: —v = (—1) -v by
Proposition 4.6.
The other axioms VA3-4 and SM1-4 are inherited from V.
Conversely, if W is a subspace, then it is a vector space with same addition and scalar multi-
plication, so by definition it is closed under addition and scalar multiplication. We also have the
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existance of a zero vector Oy which satisfies Oy + w = w for all w € W. How do we know that
this zero vector for W is the same as the zero vector for V7?7

We know from Proposition 4.6 that in any vector space, zero times any vector gives the zero vector.
Soif w e W, we have 0-w = Oy,. But w is alsoin V, so 0-w = Oy also. So we must have Oy, = Oy:
the zero vector is the same for the subspace as for the bigger space. O

Let’s see some subspaces of the vector space of all n x n matrices ., ;.

Examples 4.11: o The set of diagonal n x n matrices forms a subspace of 4, ,,.

The zero matrix is diagonal.
Adding two diagonal matrices gives another diagonal matrix.
The scalar multiple of a diagonal matrix is another diagonal matrix.

o The set of upper triangular n x n matrices forms a subspace of ., ,,.
The zero matrix is upper triangular.
Adding two upper triangular matrices gives another upper triangular matrix. Es-
sentially this is because in the entries below the diagonal we have 0 + 0 = 0.
The scalar multiple of an upper triangular matrix is upper triangular. This is because
in the entries below the diagonal, we have A -0 = 0.

o In the same way, the set of lower triangular n x n matrices forms a subspace of .4, .

We can have some more:

Definition 4.12: A square matrix A is called symmetric if A = AT, It is called skew-
symmetric or anti-symmetric if A = —AT.

Examples 4.13: These matrices are symmetric:

3 4 5
1 3 —23 19
o o o4 8
<3 2) (19 37)

5 2 9
These matrices are anti-symmetric:

[\)

N

5

0
0 3 0 -19
o o o | —4
(—3 O) (19 0 )
-5 2 0

o

-2

Another way to view symmetric matrices is to say that A is symmetric if a;; = a;; for all 4, j. And

an anti-symmetric matrix has to satisfy a;; = —aj;.
Notice that the diagonal elements of a symmetric matrix are completely unrestricted, but the
diagonal elements of anti-symmetric matrices all have to be 0. That is because a;; = —a;; in an

anti-symmetric matrix.

Example 4.14: The set Sym,, of symmetric n x n matrices forms a subspace of .#, .

o The zero matrix 0 satisfies 07 = 0, so it is symmetric.
o If A, B are symmetric, then (A + B)T = AT + BT = A + B, so the sum is symmetric.
o If A is symmetric and X € R, then (AA)T = MAT = \A, so it is also symmetric.

Exercise 4.15: Show that the set ASym,, of anti-symmetric matrices form a subspace of ., ,,.

If we have two subspaces U < V and W < V, we can form their intersection, and we can form
their union.

Proposition 4.16: (Intersection and union of subspaces)
Let V' be a vector space, and U, W be subspaces of V. Then
(i) The intersection U n W is also a subspace of V.
(i) The union U U W is a subspace of V if and only if either U € W or W € U.
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PROOF. Exercise. O

So the second statement here shows that unions are hardly ever subspaces. The right way to
“combine” subspaces is not by using union, but by using sum.

Definition 4.17: Let U, W be two subspaces of the vector space V. The vector space sum
U + W is the set of vectors

U+W={u+w|uel, weW}.

Proposition 4.18: (Sum of subspaces)
Let U, W be subspace of a vector space V. Then the sum U + W is another subspace of V
which contains both U and W: U < U+ W and W <U + W.

PROOF. ©0=0+0,withOeUand 0e W,s0o0e U + W.
o If u; +wy and ug +wq are two elements of U + W, then their sum is (ug +ug) + (w1 +wa),
with u; + us € U and w; + wo € W, because both subspaces are closed under addition.
So the sum is again in U + W.
o Ifu+weU+W and A € R, then A(u+w) = A+ Aw, with Au € U and Aw € W, because
both subspaces are closed under scalar multiplication. So A(u +w) € U + W.
SoU+W<V.
For any uw € U, we have u = u + 0 € U + W, because 0 € W. Similarly, for any w € W, we have
w=0+weU+W. SoU + W contains both U and W. O

o)

z, ye R}y = R2.

Examples 4.19: o Let U = {(g) Y E R} be subspaces of

R2. ThenU—!—T/V—{(?)7 + 0

This shows you the difference of union and sum: the union of the z-axis and the
y-axis is just the set of the two lines, but the sum of the z-axis and the y-axis gives the
whole plane. This is what we need when we are combining vector spaces.

The sum of two subspaces is the smallest subspace that contains them both.

x 0
o Let U = yl|lx, yeRpand W = y||y,zeR}. Then U+ W = R3, but there
0 z
is some intersection: U n W = yl|lyeR
0

We see that if U n W is not just the zero space, then there is some “superfluity” in the sum.
Sometimes it might be nice to distinguish between these situations.

Definition 4.20: Given subspaces U, W <V, we say the sum U + W is a direct sum, and
write U @ W, if U n W = 0, the intersection is just the zero space.

Examples 4.21: In the previous examples, the first one is a direct sum, but the second one isn’t.

Proposition 4.22: (Symmetric and anti-symmetric matrices)
The vector space My, n of n x n matrices is the direct sum of the subspaces of symmetric and
anti-symmetric matrices.

Mo,y = Sym,, @ ASym,,
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Proor. We know that Sym, + ASym, € ., ,. So we have to show that any n x n matrix
A can be written as the sum of a symmetric matrix and an anti-symmetric matrix.
Given A, note that A + AT is symmetric and A — A7 is anti-symmetric. And we have

1 1
A=A+ AT + (A= ATy,

S0 %n,n = Symn + Asymn'
To show that this is a direct sum, we have to show that Sym, n ASym, = 0. Suppose A is
symmetric and anti-symetric. Then A = AT and A = —AT,s0 A= —A,s0 A= 0.
So My, = Sym,, ® ASym,,. O

C. Column space and Null space

We can view the subspace conditions (Prop. 4.10) as saying that a subspace is a non-empty subset
which is closed under linear combinations. So we should expect that “taking linear combinations
of some vectors” should give us a subspace.

Definition 4.23: Given a non-empty set of vectors S = {wy, ws, ..., w,} in a vector space
V', then the span of S, written

Span(S) = Span(wy, wa, ..., w;) = (W1, Wa, ..., W)
is the set of all linear combinations of the vectors in S.
(w1, wa, ..., wr) = {Awy + Aows + -+ + Nw, | A,..., A\ € R}
The span of the empty set is the zero space:
Span() = 0.
Note that in our notation, the set S is finite. We can form spans of infinite sets: in that case,

a linear combination of an infinite number of vectors can only have finitely many of the A being
non-zero. But mostly we’ll consider spans of finite sets.

Proposition 4.24: (Span gives subspace)
The span of any non-empty subset S of V is a subspace of V.
Moreover, this is the smallest subspace of V' which contains all elements of S.

The second sentence means: if W is any other subspace of V with S < W, then Span(S) € W.

PROOF. Let S = {wy, wa, ..., w,}.
o 0 € Span(S) because 0 = 0-w; +0-wy+ -+ 0-w, is a linear combination of the vectors
in S.

¢ Given two linear combinations u = \wy + -+ + Ayw, and v = pywy + - - - + prw,, their
sum is again a linear combination of the vectors in S:
u+v= (A +p)wr + A2+ p2)ws + -+ + (Ar + pr)wy.
So u, v € Span(S) = u + v € Span(S).
o Given u = A\jwy + -+ - + Aw, € Span(S) and a scalar p € R, then
pu = (pA)wr + (pA2)ws + - - + (pAy)w, € Span(S).
So Span(S) < V.
Now any subspace of V is closed under taking linear combinations. So if we want all elements of S
to be in a subspace, then all linear combinations of elements of S must also be in that subspace. So

taking just the linear combinations of elements of S is the smallest subspace of V' which contains
all elements of S. O

Sometimes the span of a set might give the whole vector space V.
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Definition 4.25: We say that a set S = {w1, wa, ..., w,} spans V if Span(S) = V. If S
spans V', we also call S a spanning set for V.

So if S spans V, then any vector v € V' can be written (in at least one way) as a linear combination
of vectors from S.

1
Examples 4.26: ¢ The set { (O) , (?) } spans R?:
T 1 N 0
=z
Y 0 Y 1

so any vector in R? is a linear combination of those two vectors.

1 0 1
o The set { <0> , <1> , <1> } also spans R2: the linear combinations need not be unique.
T 1 0 1
= T + Y + 0
y 0 1 1
1 0 1
0 -2, 7|,
1 0 1
= (z— + 0 +
@=9{, ) vl
1 0 1
= - + —x + (z+
ol )+ ol @]
1 -1 1
o The set 1], 1], |1]|¢ spans R3:
0 0 1
T N 1 1 1
rry Y-
y|= ( B ) 1]+ ( B ) 1 |+2|1
z 0 1
We will learn later how to find these coefficients.
1 0
0 :
oInR" lete; =1 _1,..., en = | * |, i.e. ex is the vector with zeros everywhere except a
: 0
0 1
1 in the kth entry. Then eq,..., e, span R™.
1 1 0 0 0
xro 0 1 0
: =x1 | [+22 Of+- +zp oltxn|:
Tn—1 0 . 1 0
LTn 0 0 0 1

=Tie; +xg9es + -+ Tp_1€h_1 + Tpey

These vectors are very useful vectors and come back again and again. Let’s call them the
standard unit vectors.
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1 0 1 1
o The vectors | 0|, | 1 | span the z, y-plane in R3. But so do the vectors | 1|, | =1 |.
0 0 0 0
So we have
1 0 1 1
<o, 1>_<1, 1>.
0 0 0 0
o The monomials {1, z, z2,..., 2"} span the polynomial space P,: any poly is a linear

combination of these monomials.

P=ant" + ap1z"  + - +ax+ap-1
We've seen that different sets can span the same subspace.

Proposition 4.27: (Equal spans)

Given two non-empty subsets S and S’ of a vector space V, then Span(S) = Span(S’) if and
only if every vector in S is a linear combination of vectors in S’, and every vector in S’ is a
linear combination of vectors in S.

PROOF. Exercise. (See steps in workbook.) O

Given any m x n matrix A, the n columns of A are vectors in R™:

1 1 T .
A= (all af af,) with a1, as,..., a, € R™

So we can consider the span of the columns of A, and this is a subspace of R™.

Definition 4.28: Given an m x n matrix A, the column space of A is the space spanned
by the columns of A.

For A = (a} a} a})7 Col(4) = (a1,...,an) .

This has a link to linear systems: recall that

r
1 1 1 T2 1 1 1 T
Ar=|ay - ap - an =r1|ay |tx2|ag |+ F+Tp—1]|Ano1 |+ T | ap
! ! I l ! l !

Tn

So for any given vector z € R™, Az is a linear combination of the columns of A, so Az € Col(A),
it is in the column space of A. This gives us

Proposition 4.29: Let A be an m x n matriz and b € R™. Then

Az = b is consistent < b is a linear combination of the columns of A < be Col(A).

PROOF. The second equivalence is by definition of Col(A). The first equivalence holds because
Az is a linear combination of the columns of A, as seen above. |

We can also saying

Proposition 4.30: Let A be an m x n matriz. Then the following are equivalent:

(i) For every b e R™, the linear system Ax = b has a solution.
(ii) Every be R™ is in Col(A) (i.e. is a linear combination of the columns of A).
(iii) Col(A) = R™: the columns of A span all of R™.
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PROOF. i <ii follows from Proposition 4.29.
ii «iii: We know Col(A4) < R™, so the two spaces are equal if and only if every vector b € R™ is
in Col(A). But that is exactly what ii says. O

These two results give us a method to find out if a given vector is in a given span.

Corollary 4.31: (Finding linear combinations)

Let S = {ay,...,a,} be a finite set of vectors in a vector space V.. Then b € V is a linear

combination of the vectors ay, ..., an (i-e. b€ Span(S)) if and only if Az = b has a solution.
T

Moreover, any such solution x = | : | provides the coefficients for the linear combination:
Ty

b=x1a1 + 200 + - -+ + 0y
So

Finding a linear combination To work out whether b € R™ is a linear combination of
al,...,a, € R™:

o Try to solve the linear system Ax = b.

o If it has a solution, then that solution gives the coefficients of the linear combination.

3 1
Example 4.32: Is b = | 3 | a linear combination of a; = | 1 | and as = 1 /7
1 1 -1
1 1 3
Try tosolve |1 1 <x1> =13
1)\ 1
1 1|3 1 1 3 1 1|3 1 02
1 1 (3]—|0 0|0 ]—]O0 1|1]— |0 1]1
1 —-1]1 0 —2|-2 0 010 0 00

2
So we have the solution <x1> = <1> Sob=2-a;+1-az. (It is a good idea to check it:)
T2

_ W W
Il
[\
=
+
[a—
=

We can also use this technique to work out if a given set spans all of R™.

Examples 4.33: o Do the vectors
1 3 4
ap=|—-4|,a=1]| 2 |, a3=|—6
-3 -2 -7

span all of R3? The vectors will span all of R3 if we can write an arbitrary vector
x

y | € R3 as a linear combination of ay, as, as.

z

MA1114 Linear Algebra Page 73 prepared by Julia Goedecke, 2019



CHAPTER 4. VECTOR SPACES COLUMN SPACE AND NULL SPACE

So we want to solve the linear system

1 3 4 T x
Az=1-4 2 —6||lz]|=1yw
-3 -2 -7 T3 z
1 3 4 | x 1 3 4 T 1 3 4 T
-4 2 —6|ly|l—1]0 14 100|y+42|— |0 7 5 ytde
-3 -2 -7z 0 7 5 |z+3z 0 0 0]z+3z—utie

2

We can see that this system is in general inconsistent. (It is only consistent for some

special constellations of x, y, z, not for all z, y, z). So these three vectors do not span
1

all of R3. For example, | 0 | is not in the span of the three vectors.

0

1 2 -1
o Do the vectors a; = <2>, as = <1> and ag = ( 4 ) span all of R2?
Solve
12 -1\ (7 @
Ax = T2 | = .
2 1 4 y
T3
(12—1x> <12—1 x) (12—193) (103x—W>
- - 22— - 2z—
2 1 4 |y 0 -3 6 |y—2a 0 1 —2| 2y 0 1 —2 —
This system has a solution (in fact infinitely many), so the given three vectors do span

RQ
For example, choosing x3 = 0, we can write

()G ()G ()

o Do the vectors

1 2
a1 = 2 , a2 = 1 , ag = 3
-3 3 3
span all of R3?
Solve
1 2 T x
Av=2 1 3|[a|=|y
-3 3 3 T3 z
1 1 2|« 1 1 2 x 1 1 2 T
2 1 3|y|l— [0 -1 —-1|y—2z|— |0 1 1 2 —y
-3 3 3|z 0 6 9 | z+ 3z 0 0 3|z+3x—(12x—6y)
1 1 2 T 1 1 2 x
— 10 1 1 2z —y — |0 1 1| 22—y
z+6y—9x
0 0 3|z+3z— (122 — 6y) 0 01 &
1 0 z— (%2 + 4y — 62) 1 0 0|7x—4y— 22— (5z—3y— 32)
— |0 1 0|20—y—(32+2y—3z)|— |0 1 O br—3y— 1z
0 1 1242y -3z 0 0 1 1242y -3
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So, as this system has a solution, the three vectors do span R3. And we have

T 1 1 1 1 1 2
Yy —(2x—y—32> 2 +(5x—3y—3z) 1 +(3z+2y—3x> 3
z -3 3 3

Important: we will be solving linear systems a lot in the rest of the course. It is crucial that you
keep in mind the meaning of what you are doing: we usually solve a linear system for a reason, to
find out something else we want to know. When you’ve solved a linear system, you then have to
translate it back into what it means for the question you were trying to answer.

There is an alternative method in the case when we have a square matrix: Recall from invertible
linear systems (Proposition 3.30) that an n x n matrix A is invertible if and only if Az = b is
consistent for all b € R™. So given n vectors a1, ..., a, € R™, we know that

1 1 T\ . . :
(a1,...,an) =R" <« A= (llf e aln> is invertible.

So the above links spans and the column space of a matrix to the existence of solutions of certain
linear systems. We can also look at the set of solutions of certain linear systems.

We already mentioned in Chapter 2 that the solutions of a homogeneous linear system form a
subspace.

Recall: The set of solutions to a homogeneous linear system Az = 0 with n variable forms a
subspace of R™. See Proposition 2.29.

This has a name:
Definition 4.34: For any m x n matrix A, the set of vectors {x € R"” | Az = 0} is called the

null space of A, written Null A. Another name for the null space is the kernel of A, written
Ker A.

We will learn more about kernels in the second semester.

Examples 4.35: ¢ Any invertible matrix has NullA = 0: Az = 0 has only the trivial
solution x = 0, so the null space of A is the zero space.

A square matrix is invertible if and only if Null A = 0.

1 3 4
¢ The null space of A= | —4 2 —6 | is the set of solutions to Az = 0:
-3 -2 -7
1 3 4 1 3 4 1 3 4 2
-4 2 —6|— |0 14 10|— |0 1 2|— (0 s
-3 -2 -7 0 7 5 0 0 0 0 0
So
—13
NullA=<t| -5 teR
7

o A non-square matrix can have the null space being 0 without being invertible (recall a
non-square matrix can never be invertible):
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1 2
Let A= |2 1| Find null space:
3 1
1 2 1 2 10 0
2 1|— 1|0 -3|— 10 1 SO NullA:{<0>}:0.
3 1 0 -5 0 0

D. Vector Spaces: Study guide

Concept review.

o Vector space, vector space axioms

Space of matrices

Space of polynomials

Properties of zero and negatives in a vector space
Subspace, subspace conditions

Symmetric and skew-symmetric/anti-symmetric matrices
Several matrix subspaces

Intersection and union of subspaces

Sum of subspaces

Direct sum

Span of vectors, spanning set for vector space
Span is a subspace

Column space of a matrix

Null space of a matrix

Skills.

Show a given set with operations is a vector space.

Determine whether a given set with operations is a vector space or not.
Prove simple results using vector space axioms.

Show a given subset is a subspace.

Determine whether a given subset is a subspace or not.

Form intersection and sum of given subspaces.

Determine whether a sum of subspaces is direct or not.

Determine whether a given vector is in the span of a given set of vectors.
Determine whether a set of vectors spans the whole vector space.

Find the coefficients to write a given vector (or a general vector) as the linear combination
of a set of vectors.

Determine whether a given vector is in the column space of a matrix.

¢ Determine the null space of a matrix.

[ I R R IR IR O R IR I I R

<

LI R BRI VIR IR R R R o

<
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CHAPTER 5

Linear Independence and Bases

A. Linearly independent sets

We have seen that when we write a given vector as the linear combination of a set of vectors,
sometimes we only have one way of doing this and sometimes we have several different ways of

doing this. For example,
x
= x
Y

I
o

+ (y—=x)

S = O =
= o = O
_ = =

has many options, but when using just the first two vectors

(-0

there is only one option. We will now investigate the relationship between the vectors which
determines which of these cases happens.

To do this, we focus on the number of ways we can write the zero vector as a linear combination:
Given vectors vy, ...,v; € V, the equation

A0 + AUy + -+ Apup =0

always has at least one solution: A\; = Ay = -+ = A = 0. We call this the trivial solution, as
we did for linear systems. The question now is whether there are other solutions for the A; which
also give the zero vector.

Definition 5.1: A subset S = {v1,...,vr} < V of a vector space V is called linearly inde-
pendent if
A101 + Ay + -+ Apup = 0
with \; € R implies that Ay = Ao =--- = A\, = 0.
If there are \; not all zero such that
Av1 + Agvg + - - 4+ A =0

then the vectors are called linearly dependent.
We call such a linear combination with non-zero coefficents a dependence relation.

In words: a set of vectors is linearly independent exactly when the only way to get 0 as a linear
combination of them is to set all coefficients to zero.

1 2
Examples 5.2: ¢ The vectors o) \o are linearly dependent. If you draw them into a

coordinate system, they both lie on the z-axis, so we see they are parallel.
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Two vectors vy, ve are linearly dependent exactly when they are parallel:
A1 + Avg =0 with A\ #0 = v = ——wvs

v = pve = 1.-v; —puy =

1 2 0
For example, for these two vectors, 2 <O> -1 <O> = (0> is a dependence relation.

1 0
o <O> and <1> are linearly independent. Draw them on a coordinate system.

1 -1
o The vectors O) and ( 0 ) are linearly dependent.

o It helps your intuition to picture two vectors in the x, y-plane and decide if they are
linearly independent or not. If they lie on the same line, they are dependent. If they do
not lie on the same line, i.e. are not parallel, then they are linearly independent.

1 1

¢ Are the vectors 1), <2> linearly independent?
2

We want to know if there are any non-zero coefficients such that

) ) o)

To find this out, we could solve the linear system:

o) =69 =6) 6

So the ony solution is Ay = 0 = As. So these two vectors are linearly independent.

N =

1 0 0
0 1 :
¢ The standard unit vectorse; = | _ |,ea=| . |, ..., en = | * | are linearly independent
: : 0
0 0 1
in R™:
1 0 0 0
0 :
Mo+ ] =
: : 0 0
0 0 1 0
has unique solution Ay = Ao =--- =\, =0.
¢ The monomials 1, z, ..., x™ are linearly independent in P,,:
A-l4+XM-z4+--+ X -2"=0
has unique solution \g = A\; =--- =\, =0.

o The polynomials p; = 1+, po = 1 +22 and p3 = 2+ + 2 are not linearly independent
(so they are linearly dependent):

Lopr+1l-pp—1-ps=(0+a2)+1+2)-2+z+2%)=0

So there is a non-trivial linear combination of these three polynomials which gives the
zero polyomial. (This is a dependence relation.)

1 1
¢ The vectors <1> and ( 1) are linearly independent in R?: To check whether

V() ()0
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has non-trivial solutions, we solve the linear system

()6
()= 260 =6)

so the only solution is Ay = 0, A2 = 0. So these two vectors are linearly independent.

1 1 4
o The vectors vy = | 1|, vo = | 2 |, v3 = | 5 | are not linearly independent: for example,
1 1 4
1 1 4 0
3-11|+1-]12|—-1-]5]=1]0
1 1 4 0

So there is a non-trivial linear combination of the vectors which gives the zero-vector.
How could we find such coefficients? Solving

1 1 4 0
M1+ X|2]+X]5]=]|0
1 1 4 0
gives us:
1 1 4 1 1 4 1 0 3
12 5]—]|0 1 1|— |0 1 1
1 1 4 0 0 0 0 0 0
So there are infinitely many solutions, not just Ay = Ay = Az = 0. So the set is linearly
dependent. Choosing A3 = —1 gives the linear combination we wrote down above.

We can see from these examples that when we have a set of vectors in R™, we have a method of
finding out if they are linearly independent.

To find out whether a set {a1, asg,...,a,} of vectors in R™ is linearly independent:

¢ Form the m x nm matrix A with the vectors as columns.

¢ Solve the homogeneous linear system Az = 0.

o If x = 0 is the only solution, the vectors are linearly independent. If there are other
solutions, then the vectors are linearly dependent.

How do we check in other vector spaces whether a given set of vectors is linearly independent? For
example in a polynomial space or in a matrix space?
This will depend on the example, and we will learn some methods later. With a bit of thinking,
you can make a linear system out of these situations. For example:
¢ In a matrix space, you get one equation per entry of the matrix, which you can put into
a linear system.
¢ In a polynomial space, you can compare coefficients, i.e. you get one equation by looking
at coefficients of 2™, another from coefficients of "~ ! and so on. so you can put these
equations into a linear system.

1 1
Example 5.3: ¢ Are the matrices A; = 0 , Ay = 0 , Ag = 00 linearly
0 0 10 0 1

independent in .#5 37 (They are also all symmetric matrices, so you can think of them
in the vector space Sym, as well.) We want to solve

1 0 0 1 0 0 0 0
A1 + Ao + A3 = .
0 0 1 0 0 1 0 0
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Looking at each of the four entries, this gives us four equations:
1-A24+0-24+0-A3=0
0-A+1-X+0-A3=0
0-A+1-X+0-23=0
0-AM+0-X+1-A3=0

or

1 0 0 0
A1

01 0 0
Ao | =

0 1 0 0
A3

0 0 1 0

We can see that the only solution is A\; = Ay = A3 = 0, so these three matrices are linearly
independent in .#5» (and in Sym,).
o Are the polynomials p; = 2 — 3z + 1, po = 222 + 2 — 2 and p3 = 22 + 42 — 3 linecarly
independent in Py?
We want to solve

(2% =32 4+ 1) + Ao(222 + 2 — 2) + A3(z? + 42 — 3) = 0.
Looking at the coefficients of 22, we need
AL+ 2X + A3 =0.
The coefficients of x tell us that we need
—3M + A2 +4X3=0.
The constant coefficients give
A1 — 22 —3X3 =0.

So we have to solve

1 -2 =3/ \\;

The reduced row echelon form of this matrix is

1 0 -1
01 1
0 0 O

so there are non-trivial solutions. So pi1, p2, ps are not linearly independent.
For example, this is a non-trivial linear combiation of them which gives 0:

pr—po+p3= (22 =3z +1)— (22° + . —2) + (2% + 42 — 3) = 0.

As well as having the algebraic way of working out whether a set of vectors is linearly independent,
it’s also good to have an intuition.

Intuition about linear independence

o For 2 vectors: dependent < parallel
¢ For 3 vectors: dependent means they span a plane. Independent means they span a
3-dimensional space.

We phrased the definition of linear independence and dependence by looking at a linear combination
of all the vectors, all on one side of the equation. In most situations, this is the most useful way
to look at this, because that means we have a linear system we can solve, as we’ve seen above.

However, now and then it can be useful to think of it this way:
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Proposition 5.4: Let S = {v1,vq,...,05} be a set of vectors in a vector space V.. Then
(i) S is linearly dependent if and only if one of the vectors in S can be written as a linear
combination of the remaining vectors in S.
(ii) S is linearly independent if none of the vectors in S can be written as a linear combination
of the other vectors in S.

PROOF. Suppose S is linearly dependent, so we have a dependence relation
Av1 + Agvg + -+ Agvg, =0

with not all the A\; being zero. So at least one of the \; is non-zero, say A; # 0. Then we can write

A1 A2 Al—1 Al+1 A
U= U N Uz—l—TlUHl-ﬁ-"'—*vk-

So we can write v; as a linear combination of the other vectors in S.
Conversely, suppose we can write v; as a linear combination of the other vectors,

U= QU1+ 1 Vi—1 T+ V41 o Uk
then we can put everything on one side to get the dependence relation
p1vr + s 1 v—1 — v+ Ve + o+ v = 0.

So S is linearly dependent.
The second statement follows immediately from the first: If all the \; have to be zero to get

A1V1 + Agvg + - 4+ A\pu = 0,
then we can’t put any of the vectors on the other side. O

This immediately shows us:

Corollary 5.5: (Easy to spot dependent sets)

(i) Any set containing the zero vector is linearly dependent.
(i) A set with exactly one vector is linearly independent if and only if that vector is not the
zero vector.
(iii) A set with exactly two vectors is linearly independent if and only if neither vector is a
scalar multiple of the other.

Proor. (i) If S = {v1,vq,..., v} with say vy = 0, then we have a dependence relation
Ovy +0vg +---+0vg_1+1-v =0,

so the set is linearly dependent.

(ii) If we have only one vector vy, then either v; = 0, in which case 1-v; = 0 is a dependence
relation, or v; # 0, in which case the only way to get zero is 0 - v;.

(iii) We’ve seen this already:

AMUL +F A0 =0with \{ 20 = v = ——1y

v =puve = 1.-v;—pve =0

Exercise 5.6: Determine if the following sets are linearly independent or not.

1
. 1
o {0} in R%. o 0]¢ in R3. o {(1) , ( 1)} in R2.
0

1 —4
o —11,] 4 in R3. o {p1 ==, py =22, p3=0}in P,.
0 0
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Our intuition about a set of two or three vectors being linearly independent or not should tell us:
If T have 3 vectors in R?, then they must be linearly dependent.
In fact, we can prove this in more generality:

Proposition 5.7: (Too many vectors)
A set of more than n vectors in R™ is always linearly dependent.

PROOF. Let S = {vq,va,...,vr} be a set of vectors in R, with & > n. Let A be the matrix
with the vectors vy,..., v, as columns. So A is an n x k matrix.
T T T
A = Ul DY Ul PR ’l}k
! ! !
A1
Then the system Az = 0, with z = - |, has more variables than equations. So the reduced
Ak
row echelon form of A definitely has some stuff columns, so the system has a non-trivial solution
(Proposition 2.34). So the set is linearly dependent. O
B. Bases

We have now learnt the concepts of spanning set and of a linearly independent set. Putting them
together gives one of the most important concepts of Linear Algebra.

Definition 5.8: A basis in a vector space V is a set of vectors that is

¢ linearly independent and
© spans V.

Note that the singular is basis, not base. A “base” is not a term that has a special definition in
Linear Algebra. The plural of basis is bases, said with a long ee. So we have one basis and many
“basees”.

A good way to think about a basis is as a coordinate system for a vector space. The first condition
tells us that there is no inter-reelation between the basis vectors, and the second tell us that we
have enough basis vectors to give coordinates for every vector in V.

Examples 5.9: (Bases)

Since we have already seen examples of spanning sets and examples of linearly independent sets,
we can put things together.

a) In R™, the set of standard unit vectors {e1, es,...,e,} is a basis: we call it the standard basis

n

1 1
b) In R?, the set { vy = L= is a basis:

o We have seen that this set is linearly independent.

o It also spans RZ:
T\ _zr+y 1 n z—y (1
y 2 1 2 -1

c¢) The monomials {1,z,22,...,2"} are a basis of P,. We call this the standard basis of P,.

Exercise 5.10: Prove that the following are bases of the given vector space.

a) {v1 = (1), va= ()} in R2
b) {w; = (3), we = (1)} in R2
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1 -1 1
c)svm=|1],ve=|1 1], v3=1]1 in R3. (See earlier examples.)
0 0 1
1 2 3
d) vi=12],v2=|9],v3=13 in R3
1 0 4
e) The set of matrices {En = ((1) g), E = (8 é) , Eo1 = <(1) 8) , Eoo = (8 ?)} in
2,2-

f) More generally, let E;; be the m x n matrix with zeros everywhere, except a 1 in the ¢, jth entry.
Show that Ellv E12, ey Elna E21, EQQ, ey EQn, E1317 [N ,E‘ml7 [N aEmn form a basis of %m,n'

You see that

a vector space can have several different bases.

We will learn more about bases, and later find a way of determining especially good bases for a
given situation.

In all our examples so far, we’ve had a finite set being a basis of a vector space. However, this is
not always possible.

Proposition 5.11: The vector space P of all polynomials has no finite spanning set.

PROOF. Suppose we have a finite spanning set. Then let k£ be the maximum degree of all the
polynomials in this spanning set. Then the polynomial ¥+ € P cannot possibly be written as a
linear combination of the spanning set, because we can’t create something of larger degree. So the
set does not span P after all. O

Some of our results only work for vector spaces which have a finite basis.

Definition 5.12: A vector space V is said to be finite-dimensional if it has a finite spanning
set. If V has no finite spanning set, we say it is infinite-dimensional.

You see that we have defined something to do with dimensions without yet knowing what dimension
means formally. We need a little bit more before we can properly define dimension, other than
saying that something is finite-dimensional or not.

C. Coordinates Relative to a Basis

Let’s have a little summary:

Let V be a (real) vector space. A set {v1,vs,...,v,} € V of vectors in V
¢ is linearly independent if A\yv; + Ayvy + -+ - + A\yv, = 0 for \; € R implies A\; = 0
for all 4;
o spans V if very vector in V' can be written as some linear combination of the v;;
¢ is a basis of V if it is linearly independent and spans V.

We said that we can think of a basis as something like a coordinate system. Let’s make this more
precise.

Theorem 5.13: (Uniqueness of basis representation)
If S = {v1,...,v,} is a basis for a vector space V', then every vector v € V can be expressed
in exactly one way as a linear combination of S.
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PROOF. As S is a basis, it spans V. So given any v € V there exist x1,...,z, € R with
V=21V1 + ... +TpUy,.
Assume that for yy,...,y, € R we have
V=111 + ...+ YnUn .

i.e. there is some other linear combination which gives v.
We need to show that 1 = y1,..., T, = yp, i.e. that they are actually the same linear combination.
Subtracting one from the other we get

0= (1 —y1)vi+ ...+ (Tn — Yn)Un .

Since S is linearly independent this gives z1 —y; = ... = ,, — ¥, = 0 which shows the claim. O

You can think of it this way:

o A basis spans V = every v € V can be written as a linear combination of basis in at least
one way.

¢ A basis is linearly independent = every v € V' can be written as a linear combination it
at most one way.

Thus, given a basis S = {vy1,...,v,} of a vector space V', we have a unique representation of every
vector in V' by a vector in R™.

Definition 5.14: If S = {vy,...,v,} is a basis for a vector space V and v = z1v1 + - - - + T, Uy,
then the scalars z1, . .., x, are called the coordinates of v relative to the basis S. The vector
)

[v]s =

is called the coordinate vector of v relative to S.

Put differently, there is a one-to-one map from V to R", assigning to each vector in V a unique
vector in R".

1 0
Example 5.15: Let V = R? and let e; = (O) ,ey = <1> be the standard basis E. Then the

coordinate vector of v = x1 - €1 + 22 - €9 is

1 1
Now let B be the basis consisting of v; = <1) and vy = (O) . Then

(o) =) en )

x
) with respect to B is

so the coordinate vector of v = <
Y

~ 1 1
Exercise: Find the coordinate vector of v with respect to the basis S = { (1) , ( 1) }
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So how do we find these coefficients to make a coordinate vector? We learnt how to do this in
“Finding linear combinations”, Corollary 4.31.

Finding coordinate vector
Given a basis B = {v1,va,...,v,} of a vector space V, we find the coordinate vector [v]p of
a vector v € V' by solving the linear system

Av1 + Agvg + -+ - + A\pu, = .

If V = R", then:
o Put the basis vectors vy, ..., v, next to each other into a matrix A.
o Solve the system Az = v for the given vector v, which may be a particular vector,
T
or a general v =
Ln

If V is not R™, you have to use the methods mentioned earlier to set up your linear system to
solve. In all cases:

¢ The solution of this sytem gives the coefficients A1, Ag, ..., Ay.
A1
A2

¢ Then [v]p =
An

Exercise 5.16: Find the coordinate vector for the polynomial
p(z) =ap+ a1z + ...+ apz”™
with respect to the standard basis of P,.

Exercise 5.17: Let v,w e V, A, u € R and vy, vs,...,v, be a basis B of V. Show that
[\ + pw]p = Alv]s + plw]s.

In words: the coordinate vector of a linear combination is the linear combination of the coordinate
vectors.

D. Linear Independence and Bases: Study guide

Concept review.
¢ Linearly indepdendent set, linearly dependent set.
Intuition about sets of 1, 2, 3 vectors being linearly independent.
Sets of more than n vectors in R™.
Basis of a vector space.
Finite-dimensional vector space.
Uniqueness of basis representation.
Coordinate vectors.

Skills.

o Determine whether a set is linearly independent.
¢ Determine whether a set is a basis.
¢ Find coordinate vector of some vector with respect to some basis.

[ R R R

<

MA1114 Linear Algebra Page 85 prepared by Julia Goedecke, 2019



CHAPTER 6

Bases and Dimension

The results in this chapter are very crucial to the understanding of Linear Algebra, and much of
the theory relies on them.

We are interested in the relationship of linearly indepenent sets, spanning sets and bases, their
sizes, and if we can turn one into another in certain circumstances. We need to understand these
relationships in order to be able to properly define dimension, which we know intuitively as “the
degrees of freedom”.

A. Dimension

First notice the following:

We showed in the previous chapter that the standard basis of R™ has n vectors. So the standard
basis for R? has three vectors, the standard basis for R? has two vectors, and the standard basis for
R! = R has one vector. Since we think of space as three dimensional, a plane as two dimensional,
and a line as one dimensional, there seems to be a link between the number of vectors in a basis
and the dimension of a vector space. We will develop this idea in this section.

Proposition 6.1: (Bases of one space have the same size.)
Let V' be a finite-dimensional vector space, and let S = {vy,...,v,} be any basis.

(i) If a set has more than n vectors, then it is linearly dependent.
(i1) If a set has fewer than n vectors, then it does not span V.

PrROOF. (i) Let S = {wi,...,wi}, k > n. Since S is a basis, we can represent each vector
w; by its coordinate vector [w;]s. To show that S is linearly dependent, consider
Awy + -+ Apwg = 0.
Using the coordinate vectors with respect to .S, this is equivalent to

/\1[w1]5 + -+ )\k[’wk]s =0.

But [wi]s, ..., [wk]s are k vectors in R™ with k > n, therefore by Proposition 5.7 we have
too many vectors, and we know that {[w1]s, ..., [wk]s} is linearly dependent. So there are
A1, ..., A\r not all zero, such that

Awy + -+ Agwy, = 0.

Therefore, S is linearly dependent.
Summary: We turn the vectors w; into coordinate vectors so that we can use knowledge
from R™.
(ii) Let S = {wy,...,wn}, m < n. If we assume SpanS = V, we can represent each vector v; € S
as a linear combination of S, i.e.,

V1 = a11W1 + -+ Q1 Wm

Up = A1pW1 + *+ + QmpnWm,
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Consider the equation Ajvy + -+ + Apv, = 0. Substituting the expresssions fo v; into this
equation, and reordering we have

()\1@11 + -+ )\naln)wl + -+ (Alaml + -+ )\namn)wm =0.

Let’s call it
H1w1 + -+ Wi = 0,
ie. AMjai; + -+ + Apar, = w1 and so on. Now consider the homogeneous linear system

)\1@11 + - +)\na1n =0

Mam1 + -+ Appn =0
This is a homogeneous linear system with n unknowns and m equations where n > m. By
Proposition 2.34, as this system has more unknowns than equations, there are non-trivial
solutions Aq,...,\, to this equation. But then the coefficients p; in the equation
piwy + -+ Wy, =0
all vanish (with some non-zero \;), so if we rearrange it back to
Avr + o+ Apvp = 0

we see that this has a non-trivial solution. This contradicts our assumption that S was a
basis: in particular, S is linearly independent. ]

Summary: Assume that S spans V, then show that this implies that S is linearly de-
pendent. Contradiction. So S does not span V.

Therefore, any basis of a vector space must have the same number of vectors.

Definition 6.2: The dimension of a finite-dimensional vector space V is denoted by dim(V")
or dim V' and is defined to be the number of vectors in a basis for V. In addition, the zero
vector space is defined to have dimension zero.

Example 6.3: dimR"™ = n, dim P,, = n + 1, dim .#,,,,, = mn.

Example 6.4: If S = {v1,...,v;} is linearly independent, then S is a basis for Span(S). This
implies that dim Span(S) = k.

In words: the dimension of the space spanned by a linearly independent set of vectors is equal to
the number of vectors in that set.

For example:

o v = (%) in R? is the basis of the one-dimensional subspace Span(v;) = {(v1 ).

1 1
o v = (%),7}2 = (g) in R* are the basis of the two-dimensional subspace W = (v1,v2)
1 1

they span.

1 1 2
o v = (%),’1}2 = (g),’l}g = (Z) are not linearly independent (as v = vy +v2). We have
1 1 5
(v1,vg,v3) = {v1,v2) = W, but v1,v2,v3 do not form a basis of W. Any two of them do,

so v1,v9 form a basis of W, and vy, vs also form a basis of W, and vs, v3 also.

Example 6.5: It is sometimes useful to think of dimension as “degrees of freedom” or “how many
numbers can I choose till a vector of that vector space is determined”. For example:
The vector space of symmetric n x n matrices has dimension n + 1(n? —n) = (n? + n). We can

see this in different ways:

o We can choose all the entries on the diagonal, that is n entries; then of the remaining

n? — n entries, we can choose half, because that determines the other half (since the

matrix is symmetric).
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o OR: Let’s say we choose the lower half of the matrix (including the diagonal). So in the
first row, we can choose 1 entry, in the second row we choose 2 entries, in the third row 3
entries, etc., up to n entries in row n. So we have chosen 1+2+3+---4+n = %n(n +1)
entries.

That is a good way to think of it. How do we prove that this is really correct, in terms of the
definition of dimension as the size of a basis? We have to give some basis of the symmetric matrices.
Essentially, for each entry we are allowed to choose, we can make a basis vector (or matrix in this
case).

For symmetric 2 x 2 matrices, a nice basis is

10 0 0 0 1
B = By = ,S12 = .

For 4 x 4 matrices, we can give

1000 0000 000 0 000 0
000 0 0100 000 0

E1: 3E2: 7E3_ >E4:00003
000 0 0000 00 1 0 000 0
000 0 0000 000 0 000 1
010 0 0010 000 1
100 0 0000 000 0

S12 = 7S: 7S: )

2710 0 0 0 BTl 0 0 0 ““lo 0o 0 o0
000 0 0000 1000
000 0 0000 000 0
001 0 000 1 000 0

Sy — . Sgy = . Sgy =

7 1o 1 0 0 7o 0o 0 0 7 lo 001
000 0 0100 00 1 0

Exercise: Write down a basis for the 3 x 3 symmetric matrices.

You can use similar ideas to find the basis of the null space of a matrix (or the solution space of a
homogeneous linear system):

1
Examples 6.6: o Let A= 12 . We want to find a basis for Null A, which is the
1

N~ Ot
DY © W

set of solutions to Ax = 0.
We know how to solve this system and write down the set of solutions:

1 5 3 1 5 3 1 5 3 1 0 8
279 —1|0 -3 3]—]|0 1 -1[{— |0 1 -1
1 2 6 0 -3 3 0 0 O 0 0 O
-8
SoNullA=<t| 1
1
We have one free variable in the solution, so we have “one degree of freedom”. We
-8
can see that Null A = < 1 >, and as this is a set of one non-zero vector, it is linearly
1
-8
independent. So | 1 |[is a basis for Null A. So dim(Null A) = 1.
1
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1 4 3 1 4 3
o Let A= | -1 —4 —3|. This matrix has reduced row echelon form [0 0 0|, so
2 8 6 0 0 0
—4 -3 —4 -3
NullA=<s| 1 |+¢t] O = < 11,10 >
1 0 1

Our intuition is that we have “2 degrees of freedom”, so these two vectors should form a
basis of Null A. How can we be sure?

Clearly they span Null A, so we just have to show they are linearly independent. The
system

—4 -3 0
A1 1 + Ao 0 =10
0 1 0

has only solution A\; = Ay = 0, which we can see from the second and third rows.

So these two vectors form a basis for Null A, and dim(Null A) = 2.

It will always happen like this when we have two free variables: if say the second
and third variable have “stuff columns”, then we can choose them independently of each

—4 -3
other. That’s why it is so useful to separate the solutionout as s | 1 |+¢| 0 |rather
1
—4s — 3t

than write it all together as S

So we see that

dim(Null(A)) = number of stuff columns in reduced REF of A.

We will talk more about bases and dimension of subspaces later in the chapter.
We can also build new vector spaces by pairing given vector spaces together:

Definition 6.7: Given vector spaces V and W, the cartesian product (also called vector
space product) of V and W is the set of pairs of vectors from V and W, with vector addition
and scalar multiplication defined entry-wise:

VxW={(v,w)|veV,we W},
with (vi,w1) + (v2, w2) = (V1 + v2, w1 + w2) and A(v, w) = (v, Aw).

Examples 6.8: o R x R is the vector space R? that we know: whether we write the pairs

Y
o R™ x R™ = R"™, (We will see later what this “=" really means precisely.)

x
horizontally as (z,y) or as vertical vectors ( > does not matter that much.

Proposition 6.9: (Dimension of vector space product)
Given vector spaces V. and W, their cartesian product V' x W is again a vector space. If V
and W are finite-dimensional, then

dim(V x W) = dim V + dim W.
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Proor. Exercise: Prove that V xW with the given addition and scalar multiplication satisfies
the vector space axioms. (You cannot use the subspace ones: it is not contained in a larger vector
space, but an entirely new one.)

Let vq,...,v, be a basis of V and w, ..., w,, a basis of W. We show that

(v1,0),..., (Vr,0), (0,w1),...,(0,wy)
is a basis for V' x W. (These two sentences are a summary of the proof.)
First we show these vectors span the product: given (v,w) € V x W, we have v € V, and so
v = Ay + - + Ay, for some \; € R, because the v; are a basis of V. Similarly w € W and
w= w1 + -+ + Ppmwy, for some u; € R. Then
(v,w) = (A1 + -+ ApUp, w1 + + -+ + Ly Wi,)
= (A1v1,0) + -+ + (Apvn, 0) + (0, prw1) + -+ - + (0, W)
= A1(v1,0) + - + Ay (0n,0) + p1(0,w1) + -+ + pn (0, Wiy ),
so (v, w) is a linear combination of the given vectors.
Now we show the vectors are linearly independent: consider
A1(v1,0) + -+ + A (vn, 0) + p1 (0, w1) + -+ + 1 (0, wi) = 0.
Then, using the same steps as above but backwards, we get
(M1 + -+ Ao, prwr + -+ ppwey) = (0,0),
which gives
Avr 4o+ A, =0
1wy + - F ey Wiy, = 0
separately. As vq,...,v, are a basis of V', we have \; = 0 for all ¢, and similarly u; = 0 for all i.
So the set
(v1,0), ..., (vp,0),(0,w1),...,(0,wy)

is linearly independent.
So as the set spans V' x W and is linearly independent, it is a basis for V' x W. Therefore
dim(V x W) = n + m, the size of the basis, and so

dim(V x W) = dimV + dim W. O

Remark 6.10: This shows how you can build up the standard basis of R™ step by step from the
basis 1 of R, by repeatedly taking such cartesian products.

B. Plus/Minus Theorem

Next, we consider a result which allows us to enlarge linearly independent sets and reduce span-
ning sets. The consequences of this result are very important for most of what we continue to
do.

Theorem 6.11: (Plus/Minus Theorem)
Let S be a non-empty finite set of vectors in a vector space V.
(i) If S is linearly independent and v € V is not in the span of S, then S U {v} is still
linearly independent.

(i) If S spans V, and v € S can be expressed as a linear combination of other vectors in S,
then S\{v} still spans V.

PrOOF. (i) Let S = {v1,vs,...,v;}. We want to show that S U {v} is linearly independent.
Consider

AU + - AU + Av = 0.
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If we have X # 0, then v = fﬁ()\lvl + -+ Akvg). But we know v is not in the span of S, so
we must have A = 0. So with A = 0, the linear combination reduces to

A1vr 4 - A = 0.

But S is linearly independent, so all A\; = 0. So S U {v} is linearly independent.
Summary: look at v and S separately when showing linear independence.

(ii) We know S = {v1,va,..., v} spans V, and one of the vectors in S can be expressed as a
linear combination of the others. Without loss of generality (meaning we can reorder them
if necessary), we have vy = A\jv1 + -+ + Ap_1vp—1. We want to show that {vq,...,v_1} still

spans. Given any w € S, as S spans, there are some p; € F' such that
w = u1v1 + -+ Pp—1Vk-1 + UEVk.
Then we can substitute for vy and get
W= pvr + A Pp—1Vk—1 + (M1 4+ Ag—10k—1)
= (1 + prA)vr + -+ (e—1 + e Ak—1)Vk—1

so w can be written as a linear combitation of v1,...,v5_1. As this is possible for any w,
{v1,...,vk—1} = S\{vg} still spans S. O
Summary: replace vy by its linear combination.

We will need this theorem for some other crucial results, but here is also a smaller example of how
it can be used.

1
Examples 6.12: a) Given the vectors v; = (é), Vg = (—()1) and vz = (%), we can see that

o v1 and vo are linearly independent: they are just two vectors and they are not parallel.
¢ v1 and ve have 0 in the third entry, so they are in the z, y-plane.
© w3 is not in the span of {vy,v2}: it has a non-zero entry in the third place.
So using the Plus/Minus Theorem (Theorem 6.11), we can see that {vi,vs,v3} are linearly
independent.
b) We can use the theorem similarly for the polynomials p; = 1 — 22, py = 2 — 22, p3 = 2. Can
you explain why ps is not in the span of {p1,p2}?
¢) If vy, vs,v3,v4 span a vector space V and v3 = v; —4wvs + 3vy, or some other linear combination
like this, then we can delete v, and v, va, v4 still span all of V.
d) If vy, ve,v3,v4 span a vector space V and vy = 204, then we can delete either ve or vg (but not
both!), so vy, vs,vs span V', and also v1, ve, v3 span V.

One of the nice consequences of the Plus/Minus Theorem is that, when a potential basis has the
correct size, i.e. the same size as the dimension of the vector space, we can get away with checking
only one of the two defining properties of a basis.

Proposition 6.13: (Check one get one free for bases)
Let V' be a vector space of dimension n. Then

(i) any linearly independent set of size n automatically spans V', and
(i) any spanning set of size n is automatically linearly independent.

PRrOOF. Let {vy,...,v,} be linearly independent. Suppose it does not span V: then there is
some v € V which is not in the span of {v1,...,v,}. So by the Plus/Minus Theorem (Theorem 6.11),
{vi,...,vpn, v} is still linearly independent. But this is a set of more than n vectors, so can’t be
linearly independent (see Theorem 6.1). So in fact {vq,...,v,} spans V.

Suppose {v1,...,v,} spans V but is linearly dependent. Then

AU+ ...+ A\, =0

with not all A; = 0. Without loss of generality (meaning we can reorder if necessary), we have
An # 0. But then v, can be written as a linear combitation of v1,...,v,_1, so by the Plus/Minus
Theorem (Theorem 6.11), the set {v, ..., v,—1} still spans V. But this set has fewer than n vectors,
so it cannot span V' (see Theorem 6.1). So in fact {v1,...,v,} is linearly independent. |
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So when we know (through some other way) that V has dimension n, and we have a set of n
vectors that might be a basis, it is enough to check one of linearly independent and spanning, we
don’t have to do both.

Examples 6.14: (a) We can see without any calculation that

().

form a basis of R2. These two vectors are clearly not parallel, so they are linearly independent,
and R? has dimension 2, so any linearly independent set of 2 vectors forms a basis.
(b) We can see without any calculation that

2 4 -1
v = 0 |,vo=|0], v3= 1
-1 7 4

form a basis of R?. The first two vectors lie in the z, z-plane (can you explain why?) and are
clearly not parallel. The last vector vs is not in the z, z-plane, so it is not in the span of {v1, va}.
So by the Plus/Minus Theorem (Theorem 6.11), the set {v1, va, v3} is linearly independent. So
as R? has dimension 3, it is automatically a basis.

(c) Let P, be the space of polynomials of degree at most n. We know that 1,z,22,...
basis of P, see Example 5.9 c. So dim P,, = n + 1. So to check that

" is a

pp=Lpi=z+lLpp=2"+z+1, ... pp=a"+2" "+ Fa+1

is a basis of P,, it is enough to check one of linearly independent and spanning.
Exercise Check that po,...,py, is a basis of P,. (This is 6.13c) in the workbook.)
(d) (This is 6.12¢) from the workbook.) Let eq, ea, ..., e, be the standard basis of R”, and consider

vy =e1 +eg, Vg =€zy+e€3, ..., Vpy =€+ €kt1, ..., Up =€y t+ €1.

We will check in lectures whether these form a basis of R™ or not. The answer will depend on
whether n is odd or even. When n is even we will show that there is some dependence relation.
When n is odd, we will show they form a basis by showing that they span. The easiest way
to show that these particular vectors span is to give each standard basis vector as a linear
combination of one of these. As soon as we can get all the standard basis vectors, we can also
get any other vector.

The next result is going to be used a lot throughout the course.

Theorem 6.15: (Extend to a basis)
Let V' be a finite-dimensional vector space. Then

(i) any linearly independent set in V' can be extended to a basis of V', and
(i) any spanning set of V' contains a basis of V.

PROOF. (i) Suppose {v1,...,v;} is a linearly independent set in V with k < n = dim V. We
want to show that we can add vectors to this set to get a basis of V.

As a set of fewer than n vectors cannot span, there is some vg;1 € V which is not in
the span of {v1,...,vr}. So by the Plus/Minus Theorem (Theorem 6.11), {vi,..., vk, Vk+1}
is still linearly independent. If k + 1 = n, we have a linearly independent set of n vectors, so
it is a basis (by Proposition 6.13). If k + 1 < n, then {vy,...,vg41} still cannot span V, so
there is some vg 4o not in the span, so {v1,..., V511, Vks2} is still linearly independent. We
continue this way until we have a set of size n which is still linearly independent, and so a
basis of V.

(ii) Let {v1,...,vn} be a spanning set, with m > n. Then the set cannot be linearly independent,
so we have

AU+ . F AUy =0
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with not all A\; = 0; wlog (without loss of generality) A, # 0. So v, can be written as
a linear combination of the other vectors, so by the Plus/Minus Theorem (Theorem 6.11),
{vi,...,vm—1} still spans V. If m — 1 = n, this set is automatically a basis (by Proposi-
tion 6.13: it has the right size). If m — 1 > n, we can repeat the previous step and remove
another vector from the set to still have a spanning set {v1, ..., v,—2}. We continue like this
until we are left with a spanning set of n vectors, which is automatically a basis. O

Examples 6.16: (a) Given the linearly independent vectors

0 0
v = 3,’02: 2,
1 6

how can we extend them to a basis of R?? We can see that v1, v, cannot span any vector which
has a non-zero entry in the first coordinate. So adding
1
V3 = 0
0
extends v1, vs to a basis vi, v, v3 of R3. This added vector is not unique! We can choose any
. X . 4 .
vector that is not in the span of the first two, for example vy = ( 73:)), or anything else that

does not have a 0 in the first entry. It is however useful to keep it simple and look, if possible,
for standard basis vectors.

(b) Let’s try to find which standard basis vectors we can add to the two vectors below to extend
to a basis of R%.

-1

_ -2
v = L vy = 4
-3 2

The vectors are not as nice as in the previous example, but we can use column operations to
turn them into vectors which span the same subspace but are nicer.

Performing elementary column operations does not change the column space of a matrix.

1 10 10
3 2 3 0 1
6 —4| |6 o 2
3 9 3 1 0 —1

So we see that e; is in the span of those two vectors, so we definitely don’t want to add that
one. We know we need to add two more vectors to get a basis for R*. We can see that neither
es, e3 or ey are in the span of our two vectors (because the column operations did not change
the span!!l!). So by the Plus/Minus Theorem we can add any one of them; let’s say we add
e2. We can now repeat the “make it easier through column operations” step:

1 -1 0 1 0 0 1 0 0
3 -2 1 301 1 0 0 1
6 —4 0| |6 2 ol lo 2 o
3 2 0 3 ~1 0 0 -1 0

From this we see that neither ez nor e4 are in the span of those three vectors, so we can add
either of those to get a bigger linearly independent set.
In summary: we have found out by using column operations and the Plus/Minus Theorem
that
U1, V2, €2, €3
form a basis of R*.
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(¢) Not lectured: an extra example for you to work through to help you understand. In the space
Ps of polynomials of degree at most 3, consider

p=x—1, pp=x+3.

We can see that this is a linearly independent set. How can we extend it to a basis of the
4-dimensional space P37 We can see that p;, ps can’t combine to give a polynomial of degree
2, so we can add p3 = 2. Then by the Plus/Minus Theorem, p,ps,ps are still linearly
independent. We now still can’t make polynomials of degree 3, so we add py = 22, and then
P1,P2,P3, P4 is & basis of Ps.

Again these choices are not unique. We can use any polynomial with some 22 term as the
second one, and any polynomial with some 23 term for the third one. Or we could even use
g3 = 22 + 23 for the first one and ¢4 = 2% — 22 for the third one: z? + 22 is not in the span of
the first two, and then we have to find another vector that is not in the span of the first three.
Using the first three, we can only get a polynomial which has the same coefficient in front of

x2 and 23, so the ¢4 I suggested is not in the span of p1, po, ¢s.

Exercise 6.17: Using the result “equal spans” (Prop. 4.27), explain why performing elementary
column operations on a matrix does not change the column space (= span of the column vectors).

Let’s write down the method we have seen in these examples:

Extending to a basis
Given some linearly independent set of vectors {v1,...,v;} in a vector space V of dimension
n, we want to extend this set to a basis of V.

o If V =R", we already have column vectors vy, ..., v, and we will want to add some
of the standard basis vectors eq,...,e,.

o If V is not R™, then pick a basis B of V' (usually some nice one, like standard basis
of polynomials, etc) and write each of the v; as a coordinate vector: so now we can
treat them as vectors in R" after all.

o Write all the vectors vq, ..., v, next to each other as the columns of a matrix A.

o Perform elementary column operations on the matrix A, to get the columns into
as easy a form as possible. (The column version of echelon form, or reduced echelon

form.)
¢ You should now be able to see easily which of the standard basis vectors eq,..., e,
are already in the span of vq,...,vg. So pick some e; which is not in the span, and

add it. (By Plus/Minus Theorem, these k + 1 vectors are still linearly independent.)
o Add that vector to the end of the reduced version of matrix A, and reduce this bigger
matrix again (if possible). If possible, add another standard basis vector which is
not in the span of the given vectors.
o Continue like this until you have n vectors. (By Plus/Minus Theorem, these are still
linearly independent, and so by chogof for bases, they form a basis of V.)

Reducing to a basis or Finding basis for column space

Given some spanning set {vy,...,v;} in a vector space V of dimension n, we want to reduce
it to a basis of V.

(Or given a matrix A, we want to find a basis for the column space of A. For this start at the
fourth point.)

o If V. = R"™, we already have column vectors v, ..., ;.

o If V is not R™, then pick a basis B of V' (usually some nice one, like standard basis
of polynomials, etc) and write each of the v; as a coordinate vector: so now we can
treat them as vectors in R™ after all.

o Put all the vectors next to each other to form the columns of a matrix A.

o Perform elementary row operations on A (to solve the system Az = 0).

o Delete all columns of A that turn into stuff columns at the end.
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¢ The remaining columns are your basis. (Either of V| or of the column space of A,
depending on what you started with).

Exercise 6.18: In the calculations of getting A into reduced row echelon form, in every step
delete all the columns which at the end turn into stuff columns. Explain why the remaining
original columns of A are linearly independent. (C.f. Workbook Question 6.9)

This “reducing to a basis” also shows us the following:

Corollary 6.19: Every finite-dimensional vector space has a (finite) basis.

PROOF. Let V be finite-dimensional, so it has a finite spanning set. Then this spanning set
contains a basis (by Theorem 6.15ii). Clearly this basis is a finite set. O

This result also allows us to look at subspaces more carefully.

C. Bases and dimension of subspaces

Proposition 6.20: (Dimensions of subspaces)

If W is a subspace of a finite-dimensional vector space V , then:
(i) W is finite-dimensional.
(i) dim W < dim V.

(i) W =V if and only if dim W = dim V.

PROOF. (i) As V is finite-dimensional, it has some finite basis. Let’s say the basis has n
elements, so dim V' = n.

Now consider W. We want to show that it has a finite spanning set. If W = 0, then it
is finite-dimensional as {0} is a spanning set. So assume W # 0. Take some wy # 0€ W. If
{w1y =W (i.e. wy spans all of W), then we have found a finite spanning set, so we are done.

If (wy) # W, then there is some we € W which is not in this span: wg ¢ (wy). Then by
the Plus/Minus Theorem (Theorem 6.11), {wy, w2} is linearly independent. If (wq,wq) = W,
we are done. Otherwise we can find ws € W, ws ¢ (w1, wa), and so on.

As the set we build always stays linearly independent (by the Plus/Minus Theorem), it
cannot get bigger than n elements, because any set of more than n vectors in V must be
linearly dependent (Prop. 6.1). So this process must stop, giving a finite spanning set for W.

(ii) Exercise. Note that a basis of W is a linearly independent set in V.
(iii) If W =V, then clearly dim W = dim V.

Conversely, suppose dimW = dimV = n and W < V. Suppose there is some v € V,
v ¢ W. Let wy,wa,...,w, be a basis for W (which exists, because W < V and V finite-
dimensional, so W is finite-dimensional, so it has a finite basis). If v ¢ W, then by Plus/Minus
Theorem (Theorem 6.11), wy,wa, ..., wy,v is linearly independent in V. But this is a set of
n+ 1 linearly independent vectors in a space of dimension n, which is not possible (Prop. 6.1).
So in fact, there is no v € V which is not in W, so V = W.

|

Careful! If W is not a subspace of V, then it is not true that dim W = dim V implies W = V. For
example, the space P, of polynomials of degree at most 2 has dimension 3, but it is not the same
vector space as R3.

Now while we have dim W < dim V', so we have a simple relation for the dimensions, we do have
to be a lot more careful about bases of subspaces.

Fact 6.21: (Bases of subspaces)
If v1,v2,...,v, is a basis B of V, and W < V is a subspace of V, there is no reason to assume
that a subset of the basis B can be found to give a basis of W. For example:
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1 1
¢ Take the standard basis £ = {61 = (0) ,ey = <(1)) } of R%, and let W = <<1>> be

1
the subspace which is the line spanned by 1) Then no subset of E' which gives a basis

1 2
of W: any basis of W is a single vector of the form (x) (For example <1> or <2> or
x

-1
_1> )
o Let W be the space of symmetric 2 x 2 matrices, which is a subspace of V = .#55. The
standard basis of .#5y is

10 00 0 1 00
E; = By = B =  Eoy = .

We saw above that W has a basis of size 3, so has dimension 3. But there are only two
symmmetric matrices in this standard basis of .#52, so there is no subset of 3 vectors
which could give us a basis for W.

How do we get round this?

When working with subspaces W < V and bases, we always start with a basis By of the
subspace. This is a linearly independent set in V', so we can extend it to a basis By of V.
This way we get a basis of V' which contains a basis of the subspace.

But we always have to start with a basis for the smaller space for this to work!

We know that given two subspaces U, W < V, their intersection U nW ={veV |veU and v e
W} and their sum U+ W = {u+w | u € U,w € W} are again vector spaces (Propositions 4.16 and
4.18). Using this trick of extending a basis for the smaller space, we can now prove a relationship
of their dimensions.

Proposition 6.22: (Dimension of sum of subspaces)
Let V' be a finite-dimensional vector space, and U, W <V two subspaces. Then

dim(U + W) = dimU + dim W — dim(U n W).

PRrROOF. Suppose dimU = k and dimW = [, and dimU n W = m. So m < k and m < [,
as U n W is a subspace of both U and W (see Theorem 6.20). Let uy,...,u, be a basis By w
of U n W (we start with a basis of the very smallest space), and extend it to a basis By =
{ui,. .oy Umy Uma1, - - -, Uk} of U, and to a basis By = {u1, ..., Um, Wnt1,---,wiy of W. U "W
happens to be the zero vector space, then we don’t have any basis for U n W and just take bases
for U and W separately. The rest of the proof still makes sense for that case, i.e. when m = 0.
We now show that By U By = {u1, ..., Um, Um+1, .- Uks W41, - - -, W} forms a basis for U + W.
These vectors span U + W
given u+w € U4+W withu e Uyw e W, then u = Ajur+- - -+ AU + A 1Uma1+ - - - Agug for some
Ai € R, because By is a basis of U, and similarly w = p1u1 + -+ + tmUm + m+1Wm+1 + - - + pwy
for some p; € R. So

ut+w= (A +p)ur + -+ A+ o) Um + At 1Umeg1 + 0 AUk + B 1 Win1 + -0+ gy
To show the vectors are linearly indepdent, consider
AUt + o+ AU F A 1Umt1 + 0 F ARUE F 1 W1 + oo+ pwy = 0.
We can rearrange this to get
AUt 4 AU F A1 Umt1 + - F ARUE = — 1 Wil — 0 — W

Let’s call this vector v. The LHS expression shows that v € U, and the RHS shows that v € W. So
ve UnW. So, as By~w is a basis of U nW, there are some v; € R such that v = viuy+- -+ VpUp,.
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Then, using the RHS expression for v, we get
nuIUL + 0+ VU, = —m1Wmt1 — 0 — W]
= nuLUL + -+ Unlm + b+ 1Wmt1 + -+ + pwy; = 0.
But those vectors are the basis By, so they are linearly independent, so v; = 0 for all 4 and pu; =0

for all j.
This implies v = 0, so then using the LHS expresion for v, we get

Artn + -+ Al + A 1Umer + - + Mgy = 0.

Those vectors are the basis By, so they are linearly independent, so A; = 0 for all .

So we have shown that {u1, ..., Um, Um+1,- -, Uk, Wmt1,- -, Wk} 1S a linearly independent set.
So as it is linearly independent and spans U + W, it is a basis of U + W.

Therefore dim(U + W) = k + (I — m), the size of the basis. This gives

dim(U 4+ W) = dimU + dim W — dim(U n W)
as required. O

So this means if we know the dimensions of U, W and U n W, we know the dimension of U + W.
The proof also gives us a way to find nice bases for these spaces that work well together.
Sometimes it is easy to see what U n W is.

1 1 1
Examples 6.23: o V=R3,U:< 0,11 >, the x,y—plane,W=< 01,10 >
0 0 1
1 1 0 1
SoUnW = 0 > So|of,[1],|0]isabasis for U+ W = R3.
0 0 0 1
1 1 1 1
<>V=R4,U=< o >,W=< R >
1 0 1 0
0 0 0 0
1 1 1 1
U n W has basis 1.SoU+Whasbasis L , -1 , 1.
1 1 0 0
0 0 0 0
dim(U + W) = dim(U) + dim(W) —dim(U n W) =2+2-1=3.

So U + W is not all of R*. (We can see that the last entry is always 0.)
There is another situation when it is reasonably easy to work out what the intersection is:

Examples 6.24: Let V = R3, and

X1 T
U = To T1+axo+23=0p, W= To T+ 2x5 +23=0
T3 T3

Here both U and W are given as a solution set to a linear system. So the vectors in U are all
vectors which satisfy the first equation, and the vectors in W are all vectors which satisfy the
second equation. So it is easy to see that the vectors in U n W are all vectors which satisfy both
equations. So we simply solve the linear system

T +a2+23=0
T+ 229 + 23 =0
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1 1 1 1 11 1 01
1 21 01 0 01 0

-1 -1
so the set of solutionsisU "W =<t 0 .Andso | 0 |isabasisof U nW.

1 1
We can use the same technique when the subspaces are given as nullspaces of some matrix A, as
this can also be viewed as solutions to a linear system Az = 0.

to find U n W. We get

Exercise 6.25: Write down bases of U and of W that contain this basis of U n W, and write down
a basis of U + W.

But sometimes it is not so easy to see what the intersection is.

Example 6.26: Find a basis for the intersection of

1 1 2 0
U=< 11, O>7 W=< 11, O>.
0 2 0 2

Let v e U n W. This gives us

A A2 201 0
v=| A\ |+ 0O |=1m |+ 0
0 2)\2 0 2,[1,2

The second row gives A\; = p1, and the third row gives Ay = po. So now we have

A1+ Ao 201
v = )\1 = )\1
22 2o
Then the first row gives Ay = A2. So
2M\1 2
v = )\1 = )\1 1
2M\ 2
2
So choosing A; = 1 gives us the vector | 1 | which forms a basis for U n W.
2

So we can note down:

Finding a basis of an intersection
If U and W are given as solution set of linear systems (including a nullspace of a matrix):
o Put all equations of both linear systems together and solve the bigger linear system.

¢ The solutions of this bigger linear system is the intersection: find a basis like you do
when giving a basis of a nullspace.

If U and W are given as spans, or with bases:

Let U have basis uy,us,...,ur and W have basis wy, ws, ..., w;. Then
o Take ve U nW,s0v = Av; + Agvg + -+ + A\pvp = pwy + -+ pw.
o Solve the system A\jv; + Agvg + -+ + A\gvp — ppwy — -« -+ — pywy = 0.

¢ Use the solution to this system to write down v, and find a basis.
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1 1 3 1
< 1 ~1 > < 1 1 >
Example 6.27: Let V =R* U = { u; = ,Ug = W =(w = , Wy = .
1 0 1 0
0 0 0 0
Let veUnW, so
1 1
1 -1
v= A\ 1 + Ao 0
0 0
as v € U, and also
3 1
B 1 1
V= [ 1 + o 0
0 0
because v € W. So
A1+ A2 3pr + w2
_ AL — A2 _ | mt 2
A1 H1
0 0
or
A1+ Ao 3u1 + peo
AL — A2 N B S 5 0
A1 23
0 0
This gives us a system with 4 equations and 4 variables, which we can solve.
1 1 -3 -1 1 1 -3 -1 11 -3 -1
1 -1 -1 -1 0o -2 2 0 01 -1 0
1 0 -1 o] |o-1 2 1| loo 1 1
0 O 0 0 0 0 0 0 0 0 0 0
11 0 2 1 0 0 1
01 01 01 01
oo 11| Tloo 11
0 0 00O 0 00O
So if we say ps = t, then uy = —t, Ay = Ao = —t. So our v is
—t—t 2
- —t —_i—t) ’ (1)
0 0

(If it happens to be a reasonably simple system where you can just find a solution directly from
looking at the two expressions for v, that’s ok.)
2

0
So vy = 1 is a basis for U n W.

0
Now we have to extend this to a basis of U and a basis of W. We can use the Plus/Minus Theorem:
we know that u; € U and u; is not in the span of vg, so {vg,u1} is linearly independent, so it is a
basis of U (since dim U = 2). Similarly {vg,w;} is a basis of W.
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(Note we could also choose {vg, uz} for U and/or {vg, ws} for W. We’ve already seen that “extend-
ing a basis” is not unique.)
So {vg,u1, w1} is a basis for U + W, which has dimension 3.

We know how to go from a system of equations to a basis of the solution set (or from a matrix to
a basis of its nullspace), but is there an easy “algorithmic” way to go back the other way?

Proposition 6.28: (Subspace as solution set) Every subspace of R™ is the solution space
of some homogeneous linear system (i.e. the nullspace of some matriz).

PROOF. Let U < R™ have a basis uq,...,ux, i.e. dim(U) = k. Form a matrix A with the
vectors u; as rows:
<« ’u,’{ —
— ud -
A= ;
<« ’u,;{ —

As the u; are a basis of U, they are linearly independent. This means that the reduced row echelon
form of A has no zero rows, since a zero row occurs when one row is some linear combination of
other rows. So the reduced row echelon form of A has k leading 1s, so n — k stuff columns.
Therefore its nullspace W = {z € R" | Az = 0} has dimension n — k. Let w1, ..., w,—_j be a basis
of W, and make a matrix B with the w; as rows:

«— wy —
T

By the same argument, the reduced row echelon form of B has n—k leading 1s, and & stuff columns.
So the nullspace {y € R® | By = 0} has dimension k. We will show that this nullspace of B is in
fact U, the subspace we started with.

We first show that U € {y € R" | By = 0}. Let uw € U. Then as the u; form a basis of U, there are
A; such that u = Ajug 4+ Agug +- - -+ Agug. Soif Bu; = 0 for all 4, then Bu = B(Aug+-- -+ Aguy) =
M Buj + -+ + A\ Buy, = 0 as well. So we only have to show that Bu; = 0 for any 1.

Now Bu; is a vector with the jth entry ijui, i.e. row j of B times w;. But we know that
T

ul'w; = 0, because w; is in W, the nullspace of A, which has rows u] . But then also (uw;)T =0,
ie. ijui = 0, so Bu; = 0. Written more compactly:
wiu; (uFw)™ 0T 0
wlu; (uFwq)T 0T 0
Bu; = ) = ) = ) =
wl (uFwp, )T oT 0

So u; € {y e R" | By = 0}.

So we know that U < {y € R"™ | By = 0}. But we also know that dim(U) = k = dim({y € R" | By = 0}).
So by Theorem 6.20(iii), we get U = {y € R” | By = 0}, as required.

So U is the set of solutions of the homogeneous linear system By = 0 (i.e. the nullspace of B). O

So if you want to, you can use this technique to turn a “subspace given as a span/with a basis”
into a “subspace given as a solution to a linear system”, and then use the first method for finding
a basis of an intersection.
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1
-1
[ G P 2]
0
as in the previous example.

Use the technique from Prop. 6.28 to write U and W as solution spaces of linear systems, and then
use the “linear systems” method to find a basis for U n W. Check that you get the same answer
as the example above.

IS
V)
|

Exercise 6.29: Let V = R*, U = <u1 =

O = =
O = =W
S O ==

Recall that If U, W < V are two subspaces with intersection U n W = 0 being just the zero vector,
then we call U + W a direct sum and write U @ W.

Corollary 6.30: (Dimension of direct sum)

dim(U @ W) = dim U + dim W.

ProOOF. Recall that dim 0 = 0. O
1 0 0
Examples 6.31: oV =R3 U = z-y-plane = < 01,11 >, W = z-axis = < 0 >
0 0 1
Then U n W =0, so U@ W is a direct sum. Here we have U @ W = R3.
1 1 1
1] -1 1
o V—R4,U:< o >,W:< 0 > We can check that UnW =0,so U®W

is a direct sum. But U@® W # R* dim(U @ W) = dim(U) + dim(W) — dim(U n W) =
2+1-0=3.
How do we show that the intersection is just 0: take a vector v e UnW. Thenwv e U,

SO
1 1
1 -1
V= M\ ) + Ao 0
0 0
But v € W, so also
1
_ 1
V= 0
0
So we have
AL+ Ao I
Al — A N
N | (o
0 0

Looking at the third row, we get Ay = 0. Then the first two rows give y = Ao = —A3, so
p=>Xxa=0.Sov=0.

D. Bases and Dimension: Study guide

Concept review.

o Dimension of a vector space.
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SO0

SO0 0O

Vector space product (or cartesian product), dimension of vector space product.
Possible sizes of linear independent sets, spanning sets, bases, in a given vector space.
Relationships among the concepts of linear independence, spanning set, basis, and di-
mension.

Plus/Minus Theorem.

Check one get one free for bases.

Extending to a basis, reducing to a basis.

Effect of elementary column operations on span of columns.

Dimensions of subspaces.

Dimensions of sums of subspaces, dimensions of direct sum of subspaces.

Skills.

&
<

SO0 00

Find dimension of a vector space (or subspace).

Use dimension to determine whether a set of vectors is a basis for a finite-dimensional
vector space.

Extend a linearly independent set to a basis.

Reduce a spanning set to a basis.

Find a basis for the column space of a matrix.

Find the basis for the intersection of two subspaces.

Find the dimension of a sum of subspaces.
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Detour: Complex Numbers

A. Complex Numbers

Some of you will know complex numbers from school. We will go through the main points.

The complex numbers C are numbers z = x + iy with z,y € R. Here i2 = —1, giving, for
2k = Tk + WYk,
addition: 214 22 =1 + 22 + (Y1 + Y2)

and multiplication: 2129 = (21 +iy1) (@2 + ty2) = 122 — Y1y2 + 1(y122 + T1Y2).

Given z = z + iy, we call Re(z) = z the real part and Im(z) = y the imaginary part of z.
|z| = 4/2% + y? is the modulus of z, and Z = = — iy is the complex conjugate of z.

We have 27z = 22 + y* = |z|%.

We can depict complex numbers in an Argand diagram:

Im{z}

T 44

Y12

4 Re{z}

We will draw more into the argand diagram in lectures.
The angle 6 which the line to z makes with the positive z-axis is called the argument of z. We
have

Re(z) = |z| cos @

Im(z) = |z|sin 6.

We can write z in polar coordinates as z = |z|(cos + isin @) = |z[e?.
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Complex numbers have the very useful property that we can factorise any polynomial into linear
factors. For example

o 22— 1= (z + 1)(x — 1) can be factorised in real numbers, but
o 2241 has no real roots. But 22 +1 = (x+1)(z —1) can be factorised in complex numbers,
so it has complex roots.

This will become important, particularly when we study eigenvalues.
Exercise 7.1: Show that a complex number z is real if and only if z = Z.

If you are not that familiar with complex numbers and want to practice a bit, I recommend https:
//nrich.maths.org/1403, the section “The Basics of Complex Numbers” has a few exercises you
can do to get some practice.

B. Complex vector spaces

We saw the definition of a real vector space last semester; the same definition gives complex vector
spaces if we take the scalars to be complex numbers instead. When we want to talk about real and
complex vector spaces at the same time, we often write F', where F' can be R or C. Later on you
might meet vector spaces over other fields such as Z,, the integers modulo a prime, but we won’t
do that in this course.

Examples 7.2: o C™ is a complex vector space for any natural number n.

4
e.g. C3 has vectors <§§) with entries z; € C, addition is entry-wise
3

z1 wi z1t+wi
z2 | 4+ | w2 | = | z2twa
Z3 w3 z3+ws

and for a complex scalar A € C, we have scalar multiplication
A
A3 - ()
Z3 Az3
just like in R3.

O Mo n, the set of m x n matrices, is a complex vector space if we take complex matrices,
i.e. matrices with complex numbers as entries.

o The set of polynomials with complex coefficients is a complex vector space.

¢ The set C of complex numbers can be viewed as
a complex vector space of dimension 1: “vectors” are complex numbers z, and scalars
are also complex numbers (This is analogous to how R is a one-dimensional real
vector space.) Think of this as one complex degree of freedom: for each “vector”, I
can choose one complex number.
a real vector space of dimension 2: any complex number z can be written as z = z+1iy
with z,y € R, the real and imaginary part. Think of this as two real degrees of
freedom: for each “vector”, I can choose two real numbers.

Exercise 7.3: Make sure you know how to verify the vector space axioms for all these examples.
In particular, you should show that C is a real vector space as given in the very last example.

Remark 7.4: The vector space axioms are exactly the same for real and complex vector spaces.
The difference is which scalars we use. For example,

o for a linear combination in a real vector space, we use real numbers as scalars,
o for a linear combination in a complex vector space, we use complex numbers as scalars,
so more scalars are possible.

For example, as we said in the last example above, C can be viewed as a real or complex vector
space. Here is one particular difference:
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¢ As a real vector space, we have

Al4+p-1=0 withApelR
= A=pu=0.
We can’t cancel out the ¢ with any real numbers. So 1 and i are linearly independent in

the real vector space C.
o But as a complex vector space, we have a linear combination

Al4+p-i=0 with A=1du=—1,

because now complex scalars are allowed. So in the complex vector space C, 1 and i are
linearly dependent.

Remark 7.5: The definition of a subspace and the results on how to check something is a subspace
carry over just the same to complex vector spaces.

C. Real and imaginary parts of matrices

Given a vector or matrix with complex entries, we can also form real and imaginary parts: Let
z1 1 Y1
z9 T2 Y2

zj = xj + 1y; with z;,y; € R, and v = . |. Then Re(v) = - | and Im(v) = .|, and

z.” w.n y.n
we have v = Re(v) + ¢Im(v). Similarly for a matrix A with entries z;; = ;i + iy;x, we have
Re(A) = (zjx), Im(A) = (y;x) and A = Re(A) + i Im(A).

2+3i 3+ 2 V3) (31
2 x 2 example: . = +1
8i 6 0 6 8 0

We can also form complex conjugates componentwise:

z1 z1
22 E2)
ifv=1| . |thenv = S = Re(v) —iIm(v), and similarly for matrices.
Zn =
94 3 :
2 x 2 example: A= ( ;31 \/§6+ Z)
i

Z_2—31'\/5—@_2\/5_,31
L= 6 /" \o 6) "8 0

Proposition 7.6: (Properties of complex conjugation)
Let u,v € C™ and let A be a m x k complex matriz, B a k x n complex matriz, and X € C.
Then

PROOF. Exercise. (For example, consider individual entries.) O

For the rest of this course, when we say “vector space” we mean “real or complex vector space”,
unless otherwise specified.
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D. Complex roots of real polynomials

As we said earlier, one of the main (algebraic) properties of complex numbers is that any polynomial
has a root in C.

Example 7.7: The polynomial z2? + 8z + 20 has roots

—b++/b? — dac

2a

/64 — 80
2

T1,2 =

H

-+

8
2
.
2
4

=+

2i.
Let’s check:

(+4—2i)(z+4+26) = (v +4)% — (20)?

=22 +8r+16+4
=22 + 8z + 20

so this indeed factorises our quadratic polynomial.

Notice that the roots come out as a complex conjugate pair. Looking at the formula for the roots
of a quadratic, we see that if we do get a complex number as the root of a real polynomial, the
i can only come from the discriminant. And in that case we get the two roots being complex
conjugates.

On the other hand, we can also check

(x—21)(x —Z7) = 2% — (21 + Z1)x + 2171

Here
21+ 71 = (x1 +iy1) + (z1 — iy1) = 22 = 2Re(21)
2170 = (z1 +iyr) (21 —iyr) = 22 — %y = 23 + 9% = |z
ie.
(x —21)(z — 71) = 2% — 2Re(21)z + |21 %,

where 2Re(z1) and |21]? are real numbers.

Slogan: If a real poly has complex roots, then the roots come in complex conjugate pairs.

E. Complex Numbers: Study guide

Concept review.
¢ Complex numbers, real and imaginary part, complex conjugation.
o Complex vector spaces.
¢ Vectors and matrices with complex entries, real and imaginary part of those.

Skills.

¢ Determine the real and imaginary part of a complex number or a complex vector or
matrix.

o Determine the complex conjugate of a complex number, or complex vector or matrix.

¢ Verify something is a complex vector space.

o Find (possibly complex) roots of a real polynomial.
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Linear Maps

A. Definition and basic properties

Recall the following definition from Chapter 1:

Definition 8.1: Given m X n matrix A, the function T4 : R™ — R™ which sends v — Awv
is called a matrix transformation. We may sometimes just write A: R™ — R™.

We have seen that the properties of matrix multiplication give us:

A(u+v) = Au+ Av for any u,v e R™;
A(Av) = X+ Av for any v e R*, A e R.

Example 8.2: (Not lectured, just a reminder.)
Consider the map
a b T\  [axi+ bxo
c d To cxy 4+ dxs |
Then we have
a b o), (w _(a b\ (x1 + 11 _ a(xy +y1) + b(xa + y2)
c d T9 Y2 c d) \w2+yo c(x1 +y1) +d(z2 + y2)
_ [ary +ayy +bxe +by2)\  [awy +bxy L[ + byo
cxy1 + cyr + dxo + dyo cxy + dxg cyr + dyo
a b \ T _[a b AT _ al\xy + bAxo
c d To c d T2 cAxy + dAxo
) (awl + b@)
cx1 + dro

This property of “preserving addition and scalar multiplication” is a very important one, and we
call such a map linear:

and

Definition 8.3: Given two vector spaces V, W, a function T: V — W is called a linear
map (or linear transformation) if

T(Av + pu) = AT'(v) + pT (u) for all u,v e V, A\, u € F.

(Here F =R or C.)
The space V is called the domain (or source) of T, and W is called codomain (or target)
of T

In words we would say linear maps preserve linear combinations.
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Consequences 8.4: o Setting 1 = 0 we get T'(\v) = ANT'(v): you can take out scalars.

o Setting A = =1 we get T'(v +u) = T'(v) + T'(u): linear maps preserve addition.

o We could define a linear map by asking for these two properties, as we can put them
together to give the one we use in the definition. So it does not matter whether you check
preservation of linear combinations in one go as given in the definition, or separately
check addition and scalar multiplication (as long as you do both of those).

Examples 8.5: a) [Matrix transformations] As we saw in Chapter 1, any real m x n matrix
A gives a linear map Ty : R” — R™ via v — Av. So
¢ the domain of T4 is R™: to make the matrix multiplication work, we need the vector v to
have as many entries as A has columns;
¢ the codomain of Ty is R™: the vector Av has as many entries as A has rows.

1 0
0
Ife; = ( . ), B () is the standard basis of R”, we notice that
: 0

o Aey gives the first coiumn of A,
o Aes gives the second column of A,
o L.
o Ae, gives the last column of A.
So the columns of A are the images of the standard basis vectors:
Ta(er) = (kth column of A).
Then using the linearity, we can see things like
o Ta(er + ez) = Ta(er) + Ta(ez) = sum of first two columns of A.
o Taler —2e,) =Taler) — 2T a(e,) = first column minus two times last column.

Similarly any complex m x n matrix gives a linear map A: C* — C™.

T T Tl
b) [Dilations] For any r € R, the function 7T': ( : ) — ( : ) is linear: if we write v = ( : >

Tn TZn Tn

Y1
and u = . p then
Yn
T(Av + pu) = r(Av + pu) = Arv + pru by vector space axioms
= AT (v) + uT(v).

There are two particularly important cases of this example:
o when r = 0, we get the zero map 0: R™ — R", which sends every vector to 0;
o when r = 1, we get the identity map id: R” — R"™, which sends every vector to itself.

c)

[Zero map]| For any two vector spaces V, W, there is always a zero map 0: V — W
which sends every vector v € V to 0 € W, and this is linear.

d
) [Identity] For any vector space V, there is always the identity map id: V — V which

sends every vector v € V to itself, and this is linear.

e) [Projections] The function S: R? — R sending (3. ) — z7 is linear:
SO + a8 =8 (Aot )) = A +
= AS((53) + 1S ((5:))
f) The function P: R? — R? sending (51) — (51) + (3) is not linear:
P((z)+(5) = (ain) +(3)
but P((2)) + P (%) = (3) + (5) + (¥

“Translations are not linear.”
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g) The function Q: R? — R sending (5.) — 2175 is not linear:
Q((23) + (%)) = (w1 + y1)(@2 + y2) = 2122 + Y172 + T1y2 + Y192
50 e.g. Q1)+ (1)) =4
but Q (%)) +Q (%)) = z122 + Y192
s0 Q((i)+Q((1) =2

h) Let P be the space of all real polynomials. The function T': P — P defined by T'(p) = zp is
linear: for polynomials p,q € P, we have

T(Ap + pq) = x(Ap + pq) = Azp + prq.

i) Let V be the space of infinitely differentiable functions on the interval (0, 1). Then differntiation
is a linear map D: V — V:

DAf + pg) = (M +pg)' = M+ pg'.

Exercise 8.6: Show that if T is linear, then
T(Mvr + Aavg + -+ Apvn) = MT(v1) + - + AT (vy).

We will now see some of the basic properties of linear maps.

Proposition 8.7: (Linear maps preserve 0 and differences.)
IfT:V — W is a linear map, then

(i) T(0) =0, and

(i) T(u—v) =T(u)—T(v).

PROOF. Exercise. O
We know that multiplying matrices of matching sizes gives another matrix. This corresponds to

the composition of linear maps.

Proposition 8.8: (Composite of linear maps is linear.)
Let T: U —V and S: V. — W be linear maps. Then the composite SoT: U — W given
by SoT(u) = S(T'(u)) is linear.

PROOF.
SOT(/\1U1 + /\QUQ) = S(T(/\lul + /\QUQ))
= ST (ur) + AT (u2)) because T is linear
= MS(T(u1)) + X2S(T(uz)) because S is linear
= )\150T<U1> + )\QSOT(UQ) O
Example 8.9: If A is an m x k matrix and B is a k X n matrix, o Ty .
then TyoTp = Tap: composing the linear maps given by matrix R™ >R
transformations with A and B gives the matrix transformation with \ \LTA
the matrix product AB. Notice the order: we do T’z first and then Tap
Ty, as is usual in functions: (T4oTg)(v) = Ta(Ts(v)). R™

As we are used to from the identity matrix, composing a map on either side with the identity map
does not change the map.

Proposition 8.10: (Composition with identity) U g

For any linear map T: U — V', we have
(i) Toidy =T: U — V and \ \

AN
T
(i) idyoT =T: U — V. V—>V
idy

PROOF. Exercise. O
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Exercise 8.11: In general, composition of maps is associative. This means, if f: X — Y,
g:Y — Z and h: Z — W, then (hog)of = ho(gof): X — W. Show this by looking at how
these two composites act on a single element a € X.

One very nice property of linear maps is that they are determined by their values on a basis.

Proposition 8.12: (Linear maps are determined by values on a basis.)
Let T: V — W be a linear map and vy, - -+ ,v, a basis of V.. Then for any v eV we have

T(U) = )\1T(’U1) +oee AnT(Un)a

where the \; are scalars such that v = A\v1 + -+ + A v,.
Also, any choice of images wy, ... w, € W such that T'(v;) = w; gives rise to a linear map in
this way.

PROOF. As a basis spans, any v € V can be written as v = Ajv; + - -+ + A\,v,. So by linearity,
T(v) =T(AMvr + -+ Avp) = MT(v1) + -+ AT (vp).
For the second part, given T(v;) = w;, we can define T'(v) = AT (v1) + -+ + A\, T(vy,). This is
unambiguous, because v = A\jv1 + - - - + A\yv, for unique coefficients \;, because a basis is linearly
independent.
We need to check that if T is defined in this way, it really is linear. Let u,v € V, then u =
11v1 + ..o+ ppv, and v = Ajvg + ... + Ay, for unique gy, A; € F. Then for any scalars vy, v € F|
we have

nu+ vev = v (11 + -+ ) + va(A1vr + .o+ Apun)

(11 + vad1)vr + (Vipie + vado)ve + ..o + (V1 iy + V2 ) Up.
So
T(viu + vov) = (V11 + ver)T(v1) + (V1o + veX2)T (ve) + ... + (V1ptn + vorn )T (V)
and 11 T(u) + 2T (v) = vy [T (v1) + ..o+ T ()] + vo [MT(v1) + ... + AT (vs)]
(11 + v221)T(v1) + (V12 + vado)T(v2) + ... + (V1 + V2 \n)T (Vp),
so T(rhu + vov) = T (u) + 12T (v), and T is linear. O

Examples 8.13: a) The matrix A = (2 }) sends the standard basis vectors e; = ({) and ex = (9)
to (2) and (}) respectively. Then for any v = (75 ) we have

v=ux1(§)+z2(9)
SO
Av =21(3) +22(§) = (25582,

v = Vg = V3 =
1 1) 2 0/’ 3 0

of R3. We can define a linear map 7: R?® — R? by setting
T(v1) = (§), T(v2) = (%), T(vs) = (3).

Given any v = (%ﬁ) € R3, to determine T'(v), we first find the coordinates A, A2, A3 such that
3
v = A1 + AUy + A3v3:

x A1+A2+A
(8) = (1) +2a(d) +2a(f) = (03
3 1 0 0 A1

So A\ =3, Ao = x5 — x3 and A\3 = 1 — 3. So

T(v) = a3(5) + (22 — 23)( 2)) + (21 — 2)(3).
This completely determines the map T

b) Consider the basis
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Find formula for linear map from values on a basis

Suppose we know vy, ..., v, is a basis for V, and we have T'(v;) = w; € W, i.e. we know the
values of a linear map T on this basis. How do we work out what 7" does on a general vector
v € V? In the case where V = R™:

o Work out the coefficients Aq,..., A, such that
451
= AU + XoUg + - -+ + A\ Uy,
In
(Either see if you can just write them down, or solve the inhomogeneous linear

system.)
Z1

o Then T = \wi + Aowsy + + -+ + A\ wy,.

Study guide.
Concept review

¢ Linear map.

Domain and codomain.

Composition of maps.

Zero map, identity map.

Linear map is determined by values on a basis.

Build up a repertoire of and intuition for linear maps.

SO0 00

Skills

<

Determine whether a function is a linear map.
¢ Find a formula for a linear map given values on a basis.

B. Kernels and Images

In Chapter 4, we learnt about the column space and the null space of a matrix. These concepts
also exist for general linear maps.

Definition 8.14: Given a linear map T: U — V, the kernel of T is
KerT ={ueU|T(u) =0} everything which is mapped to 0
and the image of T is

Im7T ={veV |3ueU with T(u) = v} everything in V' that is reached by T

Examples 8.15: a) If T is a matrix transformation T(v) = Aw, then the kernel of T is exactly
the null space of the matrix A, and the image of T is exactly the column space of A. This is
because the columns are the images of the standard basis vectors

1 0

0 .
€1 = sy ey En = N B

. 0

0 1

so as a linear map is determined by values on a basis (Proposition 8.12), the linear combinations
of the columns are exactly images under T": if A has columns ay,...,a,, then

Tn

z1
r1a1 + -+ wpan = 01T (er) + -+ 2, T(e,) =T << >> .
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b) Recall the projection S: R? — R sending (3}) to 1.

KerS={(5) |21 =0} ={(2) |z2€R}
ImS=R
because for any x € R, we have for example (§) € R? with S((§)) = =.
¢) The map T: P — P sending a polynomial p to T(p)(x) = zp(z) has
KerT = {0} — only 0 is mapped to 0
Im T = {polynomials with constant term 0}.

d) The differentiation map D: V — V| where V is the space of infinitely differentiable functions
n (0,1), has

Ker D = {constant functions}
ImD=V

Exercise 8.16: Determine the kernel and image of the zero map and the identity, and their
respective dimensions in terms of the dimension of V.

Proposition 8.17: (Kernels and images are subspaces.)
Let T: U — V be a linear map. Then KerT is a subspace of the domain U and ImT is a
subspace of the codomain V.

PROOF. We must check:

(i) 0 e KerT: Yes, as T(0) = 0 by Proposition 8.7.
(ii) If u,v e KerT, then T(u +v) =T(u) + T(v) =0+ 0=0. Soalso u+ v e KerT.
(iii) If we KerT and A\ € F, then T'(Au) = AXT(u) = A-0 =0. So also A\u € KerT.

So Ker T is a subspace.
Exercise Check the corresponding properties for ImT'. O

As they are subspaces, the kernel and image of a linear map have dimensions.

Definition 8.18: Given a linear map 7: U — V, the dimension of the image of T is called
rank and written rank(7") or r(T"). The dimension of the kernel is called nullity and written
nullity (T") or n(T).

These two quantities are related.

Theorem 8.19: (Rank-nullity)
If T:V — W is a linear map with V' finite dimensional, then

n(T) +1r(T) =dimV.

PROOF. Let dimV = n. Let vq,..., v be a basis for Ker T, and extend it to a basis vy, ..., v,
for V' (possible by “extend to basis” Theorem 6.15). Then T'(vy) = T(vg) = -+ = T(vg) = 0, as
these vectors are in the kernel of 7. We will show that T (vg41), T(vg+2), ..., T (v,) form a basis
for ImT.

First of all, these vectors span ImT: for w € Im T, there exists v € V such that w = T'(v). As
V1,...,Vy, is a basis for V,

V=AU + -+ AUn for some \; € F.
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So
w=TwW)=TM\v1 + -+ Ayvy)
=T (v1) + -+ AT (vy) by linearity
=044+ 04+ X1 T(Vps1) + - + AT (vy).
So T'(vk+1,) ..., T(v,) span Im 7.
To show they are linearly independent, suppose
pr1 T (Vrg1) + -+ pnT(v,) =0 for some pigi1,. .., pin € F.
Then by linearity T (pg+10k+1 + -+ + ntn) = 0, SO tk+1Vk+1 + -+ - + nvy € Ker T But vy, -+ ,vg
is a basis for Ker T, so
Pe+1Vk+1 + -+ + fpUn = (101 + - Qg Vk.
But then
V1 F ot PRV — [t 1Vk+1 — 0 — fnUn = 0.
But v1,...,v, are a basis of V, so they are linearly independent, so all the p1; = 0. This shows
that T(vg41), .., T (vy,) are linearly independent, so dim(Im7T) = n — k. So
n=dmV=%k+ (n—k) =n(T) +r(T).
|

Examples 8.20: Go through any of the linear maps you have met so far, either as examples in the
notes, or from the Workbook, or other practice e.g. from Wiley+, and check that their rank and
nullity are related in this way. Start on the 4 examples after the definition of kernel and image.

Study guide.
Concept review

o Kernel and image of linear map.

o Properties of kernel and image.

¢ Rank and nullity of linear map.

¢ Relationship between rank and nullity of a linear map.

Skills

<

Find the kernel and image of a linear map.
Find bases for kernel and image of a linear map.
Find rank and nullity of a linear map.

o O

C. Surjective and injective functions

We have have seen that for a linear map T, we always have T'(0) = 0. In examples, we’ve seen that
sometimes other vectors are mapped to 0 as well, and sometimes 0 is the only vector mapped to
0. We have also seen that the image is always a subset of the codomain, and sometimes it is the
whole of the codomain and sometimes it is not. These special properties get special names, which
are actually applied to all functions, not just linear maps.

Definition 8.21: A function f: X — Y is called injective if for any a,b € X, f(a) = f(b)
implies a = b.

Slogan: “Different elements have different images.”

f is called surjective if Im(f) =Y.

Slogan: “f reaches everything in the codomain.”

SR

neither injective nor surjective L S R Lo
surjective, not injective injective, not surjective
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Examples 8.22: Look back at the examples after the definition of linear map.
b) [Dilations] If r # 0, then T: R™ — R"™ defined by T'(v) = rv is injective:

If TV = W
= rlv—w)=0
= v—w=0
= v = w.

T is also surjective: For any w € R™, also %w eR", and r - (%
¢) The zero map 0: V — W is
not injective as long as V' # {0};
not surjective as long as W # {0}.
d) The identity id: V' — V is both injective and surjective.
e) [Projection] S: R? — R with S ((§.)) = z; is surjective:
forany z e R, S((§)) = «.
It is not injective: S((§)) =S ((})) =1.
h) T: P — P with T(p) = xp is injective:
Suppose p =ag + a1x + -+ apx™ and ¢ = by + byx + - - + b, ™ and xp = 2q.

w) = w.

= aox + a1z + - apx"tt = box + - + byt
= n=m, and aj = by for all k, by comparing coefficients.
= p=q.

So T is injective.
But T is not surjective: the polynomial p = 1 has no preimage (there is no poly ¢ with
xqg=1).

Proposition 8.23: (Composing injective or surjective functions)
Consider functions f: X — Y and g: Y — Z.

(i) If f and g are both injective, then the composite gof: X — Z is injective.
(ii) If f and g are both surjective, then the composite gof: X — Z is surjective.
PRrROOF. (i) Suppose (gof)(a) = (gof(b). Then
9(f(a)) = g(f (b))
= fla) = f(b) because g injective
= a=1>b because f injective.

(ii) Given z € Z, there is some y € Y with g(y) = 2 because g is surjective. Then there is some
x € X with f(z) =y because f is surjective. So g(f(z)) = z, so gof is surjective.
O

If we look at linear maps rather than general functions, we can check if a linear map is injective
just by looking at the kernel.

Proposition 8.24: (Injectivity via kernels)

If T:V— W s a linear map between vector spaces, then T is injective if and only if
KerT = 0.

ProoF. If T is injective, then
veKerT = T(v)=0 = T(v) =T(0) = v=0.

So Ker T = {0}.
Conversely, if Ker T' = 0, suppose T'(v) = T'(w). Then

Tw)-Tw)=0 = Tw-w)=0 = v-—weKaT = v-—w=0 = v=uw.

So T is injective. O
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Exercise 8.25: Given linear maps 7: U — V and S: V — U, v-_Tovy
show that if SoT' = idy, (that is, S(T'(u)) = w for all w € U), then
(1) T is injective, and i& s
(ii) S is surjective. U

Study guide.
Concept review

o Injective and surjective functions.
¢ Behaviour of injectivity and surjectivity under composition.

Skills

¢ Determine whether a map is injective or surjective.

D. Isomorphisms

Definition 8.26: A linear map 7': V — W which is both injective and surjective is called a
(linear) isomorphism. If there exists some linear isomorphism between V and W, we say
the two spaces are isomorphic and write V =~ W.

Examples 8.27: a) If T is a matrix transformation T'(v) = Av, then T is an isomorphism exactly
when A is an invertible matrix.

b) The identity map id: V' — V is an isomorphism for any vector space V.

¢) The dilation map T': R®™ — R" given by T'(v) = rv with r # 0 is an isomorphism.

d) The projection map T: R? — R we saw before is not an isomorphism: it is not injective.

e) Let P, be the space of complex polynomials of degree up to n, and let S: P, —> C"*! be the

ao
ai

map defined by S(ag + a1z + - +a,2™) = [ . |. Thisis an isomorphism. (Exercise: check
a.n

it really is a linear map, and check that it is injective and surjective.)

We've seen that a map can be injective without being surjective, or surjective without being
injective. But when looking at a linear map from one space to itself, the rank-nullity theorem
restricts the possibilities.

Proposition 8.28: (Check one get one free for isos)
If T:V — V is a linear map from a finite-dimensional vector space to itself, then the fol-
lowing are equivalent:
(i) T is injective.
(i) T is surjective.
(iii) T is an isomorphism.

Proor.
T injective
< KerT =0 by Injectivity via Kernels, Prop. 8.24
< n(T)=0
< r(T) =dimV by the Rank-Nullity Theorem, Theorem 8.19
< ImT =V because Im T subspace of V' (see Theorem 6.20)
= T surjective.

This proves “(i)<>(ii)”, i.e. as soon as T is one of injective or surjective, it is both, making it an
isomorphism. O

Similarly to matrix inverses, isomorphisms have inverse linear maps.
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Definition 8.29: Given a linear map 7': U — V/, an in-

verse of 7' is a linear map S: V — U in the other direction (AN v

such that iy
SoT =idy: U — U and i& ls\
ToS =idy: V — V. U—7>>V

Example 8.30: If A is an invertible n x n matrix, then (T4)~! = Ty-1: the inverse transformation
uses the inverse matrix. This is because

(Ty-10Ta)(v) = A (Av) = L,v =0

and
(TgoTy-1)(v) = A(A" ) = Iyv =v.

Proposition 8.31: (Inverses are unique.)
If a linear map T: U — V' has an inverse, then this inverse is unique.

PROOF. Suppose S; and S, are both inverses to T'. Then

S1 = Speidy because composition with the identity does not change the map,
= S10(TS52) because S5 is an inverse to T,
= (510705, because composition of functions is associative,
= idy oSy because S is an inverse to T,
=5y because composition with the identity does not change the map,
so they are the same map. O

Notation 8.32: As inverses are unique, it is unambiguous to write 7~! for the inverse of T,
if it exists.

Fact 8.33: A linear map T: U — V has an inverse if and only if it is an isomorphism.

PROOF. [Not lectured] Exercise 8.25 shows that if 7" has an inverse, then it is both injective
and surjective, so an isomorphism.
Conversely, suppose T is both injective and surjective. We can define the inverse T71: V — U
by setting 71 (v) = u where u € U is such that T'(u) = v. Such a u exists because T is surjective,
and it is unique because T is injective. It is clear that then ToT—! = idy and T~ 'oT = idy. The
harder part is to show that this 77! is also a linear map. We won’t do it here. O

Corollary 8.34: The inverse of an isomorphism is also an isomorphism.

Examples 8.35: Looking back to the examples after the definition of isomorphism:

a) A matrix transformation T4 is an isomorphism if and only if A is invertible: we’ve already seen
that then (T4)~! = Ty1.

b) The identity map id: V — V is its own inverse.

¢) The dilation map T: R" — R™ given by T'(v) = rv with r # 0 has inverse T~ (v) = Lv.

ag ao
ay ay
d) Themap S: P, — C"*! defined by S(ap+aiz+- - -+a,az™) = | . |hasinverse S~!

ag + a1x + - + apx™.
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Since composing two injective linear maps gives another injective linear map, and composing two
surjective linear maps gives another surjective linear map (see Proposition 8.23), it is immediately
clear that composing two isomorphisms gives another isomorphism. But we also have an easy way
to find the inverse of the composite.

Lemma 8.36: (Socks and Shoes)
Given two invertible linear maps T: U —> V and S: V. — W, then (SoT)™1 = T71oS71.

BN

W——V

S—l

U

U——

If you first put on your socks and then your shoes,
to undo the process you have to first take off your
shoes before you can take off your socks.

idy

PROOF. As inverses are unique, it is enough to show that (SoT)o(T~1eS™1) = idy and
(TS~ 1o(SoT) = idyy. We have, for any u € U,

(T~ 1S 1)o(SoT) = T (S e8)eT = T oidyoT = T71T = idy

and similarly for the other direction. O

Isomophisms are special because they have inverses, and also because they send bases to bases.

Proposition 8.37: (Isos perserve bases.)
If T: V. — W is an isomorphism between finite-dimensional vector spaces and vy, ..., v, is
a basis of V', then T'(v1),...,T(v,) is a basis of W.

PROOF. First let us work out the dimension of W. As T is an isomorphism, it is injective, so
n(T) = 0. And it is surjective, so ImT = W, so dim W = r(T). The Rank-Nullity Theorem 8.19
gives us dimV = n(T") + r(T") = 0 + dim W, so for any isomorphism, the dimension of the domain
and codomain have to agree.

So to show that T(vy),...,T(v,) is a basis, it is enough to show that it is linearly independent,
because we have the right number of vectors for “check one get one free on bases” (Proposition 6.13).
Suppose

MT(v1) + -+ AT (vy) = 0.
Then as T is linear, we have
T(Avr + - Apvp) =0,

ie. AMug + - Ay, € Ker(T) = {0}. So A\ov1 + -+ Apv, = 0. But vy,...,v, is a basis, so it is
linearly independent, so all A\; = 0. So T'(v1),...,T(v,) are linearly independent, and so form a
basis of W =ImT. |

Theorem 8.38: (Dimension n means iso to R".)
Any real vector space of dimension n is isomorphic to R™. Any complex vector space of
dimension n is isomorphic to C™.

ProOOF. To do the proof of both statements at once, we write F' to mean R or C.
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Let V be a vector space of dimension n. Then it has some basis v1,...,v,. Define a linear map
E:V — F" by
1
0 1
E(Ul) = . = e1 E(Ug) = = €2
0 0
0 0
E(vp—1) = 5l =ena E(v,) = o= en-
1 0
0 1
A1
This extends to a unique linear map by Proposition 8.12. (We have E(v) = < .|, where v =
A

A1v1 + -+ + Ay, is the unique linear combination expressing v in terms of the given basis.) The

inverse of F is
A1
E! (( : >) =A\v1 + -+ A,
Xn

so F is indeed an isomorphism.
Exercise: Check that these two maps are indeed inverse to each other. O

Remark 8.39: Notice that the isomorphism from V to R™ given in the proof above gives each
vector v € V as a coordinate vector [v]p with respect to the given basis. So “writing a vector
as a coordinate vector with respect to a given basis” is really applying an isomorphism, and then
working in R” instead.

Corollary 8.40: (Iso < same dimension.)
Two vector spaces V' and W are isomorphic if and only if they have the same dimension.

PRrROOF. The rank nullity theorem already shows us that if V' and W are isomorphic, then they
have the same dimension. Conversely, if they have the same dimension n, then by Theorem 8.38,
both spaces are isomorphic to F™ i.e. to R™ if they are both real vector spaces, or to C™ if
they are both complex vector spaces, so there are isomorphisms T: V — F™ and S: W — F".
As the inverse of an isomophism is also an isomorphism (Corollary 8.34) and the composite of
isomorphisms is an isomorphism (Proposition 8.23), we have an isomorphism S~1T: V — W. O

Study guide.
Concept review

¢ Isomorphisms and inverses.

Relationship between injectivity and surjectivity for maps from a vector space to itself.
Uniqueness of inverses.

Inverse of a composite.

Conditions for vector spaces to be isomorphic.

SO0 0

Skills

<

Find inverses to isomorphisms.
¢ Find an isomorphism between vector spaces of the same dimension.

E. Matrix representation of linear maps

Using uniqueness of basis respresetation (Theorem 5.13), we defined the concept of a coordinate
vector in Chapter 5 (Linear Independence and Bases). We can use this idea to represent any
linear map between finite-dimensional vector spaces as a matrix.
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Definition 8.41: Let 7: V — W be a linear map between finite-dimensional spaces, and
let B = {v1,...,v,} be a basis for V and C = {wy,...,wy,} be a basis for W. Then the
matrix for 7" with respect to the bases B and C' is the matrix A whose columns are the
images of the basis vectors of V', written as coordinate vectors with respect to the basis C' of
wW.

[Tles = clTls = A= ([Tele [T@)e - [TEnlo)

This matrix is therefore a m x n matrix.

Lemma 8.42: (Linear map as matrix transformation)
Given a linear map T: V — W and bases B = {v1,...,v,} for V and C = {w,...,wy} for
W as above, then for any veV,

In words: to work out the coordinate vector of the image of v, we multiply the matrix for 7" with
the coordinate vector of v.

The order of the bases in the label is meant to show you that “the B cancels out the B and leaves
the C”.

PROOF. Let v = A\jv; + -+ + \,vn, so the coordinate vector of v with respect to basis B of V
is
A1

Then by linearity, T'(v) = AT (v1) + - + AT (vy).

If A= ¢[T]p is the matrix for T with respect to the given bases, then column k of this matrix
is the vector ap = [T(vx)]c. As taking coordinate vectors is a linear isomorphism (see proof of
Theorem 8.38), the coordinate vector of T'(v) is

A1
[T(v)]e =M[T(w1)]e+ -+ M[T(n)]ec = Mar + -+ + Apay, = A( : >

Notice that the coordinate vectors of the basis of V' are

1 0
0 0
=1 |=@e [ve=1| |=e
0 0
0 0
[’Unfl]B = = €n—-1 [Un]B = = €n.
0 0
1 0
0 1

This can help you remember or work out what the columns of the matrix A are: since matrix
multiplication gives

oo

Ay = Al |=aus the first column of A,
o
and similarly Aey = ag, the kth column of A, you see that the columns are the images of the basis
vectors for V.
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Another picture that might help you visualise what is going on:

v—Lsw %T(v)

d I+

R >R o] Aluls = [T(0)e

Remark 8.43: In the case when T: V — V goes from a vector space to itself, we usually take
the same basis for V' “on both sides”. We then just write [T'] g instead of g[T]5.

However, there is going to be an exception to this later on, when we talk about base change
matrices.

Examples 8.44: a) The identity map id: V — V is represented by the identity matrix with
respect to any basis of V| as long as we choose the same basis for domain and codomain.

b) The zero map 0: V — W is represented by the zero matrix with respect to any bases for V
and W.

¢) The dilation T: R" — R™ with T'(v) = rv has matrix

r 0 0 0
0 » O 0
A= =rl
0 0 r O
0 0 0 r

with 7 on the diagonal and 0 everywhere else. This is for any basis of R", as long as we take
the same basis for domain and codomain.
d) The projection S: R? — R with S ((5})) = z; has matrix

a=(1 o)

with respect to the standard basis vectors eq, es of R? and the basis w; = 1 for R.
e) Consider T: P, — P,41 with T'(p) = xp. If we use the standard bases 1,z,...,2" and

L,x,...,2", 2" for the two polynomial spaces, this has (n + 2) x (n + 1) matrix
o o o0 --- 0
10 0 --- 0
A=
0 0 0
0 1
o -~ 0 0 1

This is because T'(1) = x, so the image of the first basis vector is the second basis vector, and
the first column of the matrix represents this. Similarly, 7'(z*) = z**1, so the kth column must
have Os everywhere and a 1 in the k + 1st row.

f) Consider D: P,y; —> P, given by D(p) = p/, the derivative of the polynomial p. With respect

to the standard bases 1,z,...,2", 2" and 1,z,...,2", this has (n + 1) x (n + 2) matrix
0 1 0o - 0
0 0 2 ... 0
A=
0 0 0 n+1

Again this is because
o D(1) =0, so the first column must be 0.
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o D(x) = 1, so the second column must be the first basis vector, which is represented by

D
)
6
D(z*

Working out the matrix for a linear map wrt given bases
Let T: V. — W be a linear map, vy, ...,v, basis B for V and wy,...,w,, basis C for W.
This is how we work out the matrix for 7" with respect to these bases.

o Write down the definition
clTlz = (ITle [Tl - [T)e)-

ideally already substituting the given vectors vy, ...,v, into it (rather than writing
the symbol v1). This helps because you can refer back to it without having to keep
it in your mind. You can also get some marks already.

o Work out the images of the basis vectors:

Tv)=..., T(wa)=..., -, T(vy)=...

Le. you have to apply the given map to the given basis vectors of V.

o Work out the coordinate vectors of the images you have just worked out. I.e. you are
looking for Ay, ..., Ay, such that T'(v1) = Ajw; + Asws + -+ - + AWy, You do this
by solving an inhomogeneous linear system. (See if you can solve it just by looking:
if not, use Gauss-Jordan algorithm.) You have to do this for each T'(v;).

TIP: if you are using Gauss-Jordan, you can do them all at the same time: write
the vectors wy, ..., w,, into a matrix, and then write several augmentations after it:
one for each image T'(v;) that you have worked out.

A1
o You should now have [T'(v1)]c = | : |, and similarly for all the images.

Am
o Assemble all these coordinate vectors into the matrix

clfls = (T@le [Te)le - [TEae)-

o ) = kx*~1, so the kth column has a k in the k — 1st entry, and Os everywhere else.

Examples 8.45: o We saw that the projection S: R? — R with S (($1)) = 2 has matrix

a=(1 o)

with respect to the standard basis vectors e, e of R? and the basis w; = 1 for R.
If we take basis B = {v; = (1),v2 = ({)} for the domain instead, then we get matrix

c=(11).

Why? As described in the yellow box, we work out S(v1) = 1 and S(ve) = 1, which is
already given as coordinate vector in R, so we write those into the two columns.

Why does this still represent the same linear map? When we use matrix C, we have
to use coordinate vectors with respect to the new basis. So given v = (3. ), we have to
write it in the new basis: v = xov1 + (#1 — @2)va. So the new coordinate vector for v is

[v]lg = (4,"%, ), and then

C[’U]B:(l 1)( 2 >—$2+(x1—x2)—x1.

Tl — T2

So we do really get the same linear map. Going from (3}) to ("%, ) and from A to C
is called base change, and we will see it in more detail next.
¢ Consider the map

T((%)) = (-355%, )
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1 3
2 1

2
0

With respect to the standard basis, this has matrix

(5

How do we work out the matrix with respect to the basis

B={v1=(1),v2=(})}?

We need to find

We work out

T(’Ul) = (%) = 2’01 +0'U2
T(?)Q) = (g) = 0vy + 3vo

c-imo- (3 9)

This happens to be a very nice matrix, and it tells us something about the map that we
could not see from the first matrix: it scales any multiple of v; by 2, and any multiple
of vo by 3. We will see this in more detail in the next chapter about eigenvalues and
eigenvectors.

Consider the map

so the matrix is

T((2)) = ().

This is a map 7: R? — R2. With respect to the standard bases for both R? and R?,

this has matrix
1 1
e 0
1 0 -1

1 1 1
Let’s work out the matrix wrt basis B=<v; = |1|,vo=]|1],v3= |0 for R® and
1 0 0

1
basis C' = {wl = <2> , Wy = <i’>} for R2.

We want to find

etrls = (|7 ((
r()=a ()= ()=

Now we need to find the coordinate vectors of these with respect to basis C. We can
solve 3 inhomogeneous systems at once:

1 1 3 1 1 3
1 0 -5 -1 0 1

=
N—
N—
[ E—
s}

N
/N
/N
O
N—
N~—
[E—
o

~
/N
/N
QO
N—
N—
[E—
oo}
N—

2
1

2
—4

2
-3

[SHTE ]
gl N
[S{[SCRT
Utl= ol
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So this tells us that
2 2 (1) 4 (3 [ (2]
=—z + - SO =
- ¢
2 1(1 N 3 (3 2
= — — SO =
1 5 \2 9 \1 1
L lc
1 2 (1 N 1(3
= - - SO
1 5\2 5\1
So we put it together into a matrix:

clT)s = <_

How do we check if the answer is correct? We cannot check it as easily as when we use
the standard basis. The check happens in the three lines where we can work out if the
vectors are really those given linear combinations of the basis C.

/N -/
(Sl I

(SN

v

Gil= o oreo ot

RS
[ —
~
L I}
Q
I
VR
~ '

(SIS

Utl= Ol
SN——

(SN
[S[SCRSITE

Example 8.46: Not lectured: this is an extra worked example for you, but we don’t have time to
go through everything in the lectures.

To see why we want to use the same basis on both sides when looking at maps T': V' — V, consider
the dilation map T'(v) = 3v on R3. The matrix for T in the standard basis is

300
A=1|0 3 0]|=3I,
0 0 3
which visibly looks like “multiplying by 3”. If we take basis B = {vl = ( i ) Vg = (i),’Ug = (é) }
for both sides, then T has matrix
3 00
A=10 3 0|=31
0 0 3

again, because T'(v1) = 3vy, etc. But if we look at the matrix for T using B for the domain (source)
and the standard matrix for the codomain (target), then T has the matrix

3 3 3
C=13 30
3 00
because T'(v1) = (g), T(vg) = (%) and T'(vs) = <§ . This matrix is not as useful, because we
do not see the very important property that “I" is just multiplyling by 3”.

We can even make T' have matrix
10
D=0 1
0 0

if we take the standard basis for the domain and the basis consisting of 3 times the standard vectors
for the codomain. That does not tell us much about what the map does, other than that it is an
isomorphism.

This is the reason that when we have a map T: V' — V from one vector space to itself, we (almost
always) want to use the same basis on both sides.

0
0
1
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Proposition 8.47: (Matrix of composite is product of matrices.)
IfT:U—V and S: V— W are two linear maps, and Bi, Bs, Bs are bases for U, V,W
respectively, then

Bs[SOT]Bl = 33[5]32 BQ[T]BI'

In words: composition of maps corresponds to multiplying matrices. (We’ve chosen the placement
of the bases as subscripts so that this composition comes out looking visually helpful.)

PRrOOF. We apply the definition of the matrix representing a linear map. Given as exercise in
Lectures. You should either try to work it out yourself, to practice if you understand the definition
(best learning opportunity), or follow the proof below, making sure you understand it (second
best).

Suppose By = {u1,...,u}, Bo = {v1,...,vn} and Bs = {wy,...,w,}, and write D = p,[ST]p,,
C = p,[S]B, and A = B,[T]p,- So we want to show D = CA. I'm deliberately trying to avoid
having a matrix B, so as not to confuse it with the bases.

The kth column of the matrix D = p,[SoT]p, is dy = [S(T(ux))]B;. In words: the image under
SoT of the kth basis vector of U, written in the basis of W. We know by how matrix multiplication
works that dp = Cap C times the kth column of A (c.f. Definition of matrix multiplication,
Chapter 1).

Using how linear maps work as matrix transformations (Lemma 8.42), we know that [T'(ux)]B, = ax
in words, the coordinate vector of the image of the kth basis vector of U is the kth column of matrix
A. And further, Cay, = p,[S]5,[T(ur)]B, = [S(T(ur)]Bs. So the image of uy under the composite
SoT is indeed the kth column of the product C'A, which means by definition D = CA. O

Proposition 8.48: (Isos have invertible matrices.)
Let T: V. — W be linear and B a basis of V, C a basis for W. Then T is an isomorphism
if and only if the matrixz for T with respect to B and C' is invertible. In this case,

BT e = (c[T]s) ™"

Given as exercise.

EXPLANATORY PROOF: We will fix some notation first. Let B = {v1,v2,...,v,} and C =
{wy,wa, ..., w,} be the bases (recall iso if and only if same dimension), and let v € V be v =

A1
Av1 + -+ + Ay in terms of the basis vectors. So the coordinate vector for v is [v]p = < : )
Xn
Let A = ¢[T]p be the matrix for T, and have columns A = (a1 ay - an).
A1
The main idea of the proof is this: we view v as the vector < :
Xn
matrix A. Then to “undo T”, we have to multiply by the matrix A~!.
Suppose T is an isomorphism, then it has an inverse T7': W — V, with ToT~! = idy and
T~1oT =idy. Let the inverse have matrix D = p[T~!]c. Since the matrix of a composite is the
product of the matrices (Prop. 8.47), and the identity map is represented by the identity matrix

with respect to any basis, we have DA = AD = I,,. So D = A~!, and A is invertible.
H1

Conversely, suppose A is invertible. Then for any column vector ( : ], we can calculate the
,”l"ll

) and T as multiplying by the

M1 A1
column vector A_1< : ) = ( : ) Then, if w = pywy + -+ + ppwy in W, define S: W — V as
o n

A1
S(w) = Avp + -+ 4+ Avp, ie. [S(w)]B = A_l[w]c = ( )

An
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We want to show that S is the inverse of T. To work out S(T'(v)) and T'(S(w)), we first work out
what coordinate vectors they correspond to. We know

“()-()-
€)-0)

So to work out S(T'(v)), we have to find the coordinate vector of T'(v), apply A~! to it, which
gives us the coordinate vector of S(T'(v)).
We have

[S(T(W)]s = AT T (v)]c = A7 Alv]p = [v]5.

Writing out the full column vectors:

251 A1
[S(T(v)]p = A~ ( : ) - A1A< ; )
Hn An

[T(S(w))]e = AlS(w)]s = AA™ [w]e = [w]c-

Il
7N
>
~

And conversely

Writing out the full column vectors:

A1 M1 1
[T(S(w))]C—A( : ) —AAl( : > = ( : )
An Hn Hn

Soif v = Ajvy + -+ -+ Aoy, then S(T(v)) = Mvr + -+ Aoy, = v, and if w = pywy + -+ + Wy,
then T'(S(w)) = pav1 + -+ + ppvy, = w. So S =T7! and T is an isomorphism. O

HIGHER-LEVEL PROOF: This is just turning the above proof into short-hand. It’s really the
same proof.
Recall the isomorphism E;: V — R” from “dimension n means iso to R™”, Theorem 8.38. So we
also have Ey: W — R™. If A is the matrix for T" with respect to bases B and C and we write
A also for the matrix transformation A: R™ — R", then T' = E LAE,. (To calculate T', turn a
vector into its coordinate vector, multiply by A, and turn the resulting coordinate vector into an
element of 1W.) This also gives A = E;TFE; .

v—Low

R* ——R"
A

If T is an isomorphism, then 7~! also has a matrix C representing it, and we have CA =
E\T7'TE[! = BiidyE; ! = I, and AC = BEyTT 'E;' = EyidwEy ' = 1,50 C = A7,
Conversely, if A is invertible, then the inverse of T is S = E] 1A=1E,. (To work out S of some
vector, turn the vector into a coordinate vector, multiply it by A~!, and turn it into an element
of V)

We have

ST = E;'AT EyE; P AR, = E;PATYAE, = EJVLE, = idy,
and

TS = By 'AE B AT By = By PAAT By = B ML By = idwy,
so indeed S = T~
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BASE CHANGE

We can summarise the whole situation like this:

idy

N

T T
— W —V and

\%4 w
l lEz Ey

Eq

U

I,

idw

TN

T T
—_—V —

W W
N

E>

U

I,

Study guide.
Concept review

¢ Linear maps as matrix transformations.

When to use different bases for domain and codomain, and when to use the same basis.
Identity and dilation have the same matrix with respect to any basis.

Matrix of composite map and matrix of inverse map.

SO 0

Skills

<

Find the matrix for a given linear map with respect to given bases.
Find the coordinate vector of the image of some vector under a linear map.

<

F. Base change

We will now look at how to switch between coordinate vectors with respect to different bases:

Definition 8.49: Let V be a finite dimensional vector space, and By and Bs be bases of V.
Then the matrix for the identity map id: V' — V with respect to B; for the domain and Bs
for the codomain,

B2 [ld] B,

is called the base change matrix from basis B; to basis Bs.

P=Pp _.B, =

Note that any base change matrix is automatically an invertible matrix, because the identity map
id is an isomorphism (c.f. “Isos have invertible matrices”, Proposition 8.48).
We define base change matrices this way because they satisfy:

Proposition 8.50: (Base change)
Let V be a finite dimensional vector space, and let B; and By be bases of V.. Then for any
veV,

[vlB, = Pp,—B,[v]B;-

In words: to change the coordinate vector for v with respect to basis B; into the coordinate vector
of v with respect to basis By, we multiply it by the base change matrix.

PROOF. Because of how the linear map id: V' — V is viewed as a matrix transformation (c.f.
Lemma 8.42), we have

[id(v)]B, = B.[id]s, [v]5,,
which exactly says
[v]B, = PB,—B,[v]B,-
|
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Example 8.51: Consider the standard basis E = {e; = (}),e2 = (9)} for R?, and the basis
B = {v; = (1),v2 = ({)}. Then the base change matrix Pg_,5 = P has as first column the first
basis vector of basis B, written in the basis E. So

1 1
Pp_g= (1 0>

We saw earlier that if [v]g = (72), then [v]p = (,,"., ). Then

Pl = G ;) (ﬁ_:) - (” " ‘”””) - <§1> ~ [l

Slogan: “Base change matrix from any ‘other’ basis to standard basis is easy to write down:
the columns are just the ‘other’ basis vectors.”

To work out the base change matrix the other way round, i.e. Pg__, g, we have to write e; and es
in terms of v; and wvs:

er=(}) = o1l
62:(?):1,1_1}2 SO [62]B:(71)

and so the base change matrix is

reatite= (0 1) () < (7)< e

Notice that Pr_,pPp_,g = (}9) = I and Pp_,pPr_.p = I, so Pg_,p = Pz . Thisis
always the case.

and indeed

Lemma 8.52: (Backwards base change has inverse base change matrix.)
Let V' be a finite dimensional vector space, and let By and By be bases of V.. Then

_ —1
P32—>Bl = PBl—>BQ‘

PROOF. Let dimV = n. Since the matrix of a composite is the product of the matrices
(Prop. 8.47), we know that

F)BZ_,B1 P’Bl_>B2 = 32 [id]B2 B2 [id]Bl = Bl [idoid]Bl = ITL
and similarly
P, B, Pp, B, = In,
so Pp,_,p, = Pgll_,BQ as claimed. O

This helps us to work out a base change matrix for more complicated bases.

Example 8.53: Consider the basis B = {v; = (1),v2 = (1)} for R?. Calculating the base change
matrix Pg__,p in this case is not completely straight-forward: we cannot just see what e; and es
are in terms of these new basis vectors v; and vo. But we saw earlier that Pg__, g is easy:

1 1
Pg g = (1 2)-

And so we know that the base change matrix the other way round is the inverse of this matrix,
which we know how to calculate. So

2 -1
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and indeed

Proposition 8.54: (Base change for matrices)
Let T: V. — W be a linear map between finite-dimensional vector spaces, and let By, By be
two bases for V., C1,Cy two bases for W. Then

Cy [T]B1 = PC_11—>02 Cs [T]B2P31—>Bz'

PROOF.
. [e5] [T]Bl .
basis B; V—e/e—W basis C4
P51—>52l Pco,—cq
basis Bs V—m0 2——W basis Cy
[T B,

We know that for v € V', we have

Ch [T]B1 [U]Bl = [T(U)]Cl and Ca [T]Bz [U]B2 = [T(U>]C2'

And using the base change matrices, we have

[U]Bz = Pp,— B, [U]Bl and [T(v)]cz = Pc,—c, [T(U)]Cl'

Putting these together, we get two expressions for [T'(v)]c,: first we get

T [vlB, = T8, Pei—B.[v]B,
= [T(v)]c, = Po,— 0, [T(v)]ey
which implies
[T(W)]e, = Po) e, T8, P35, [v]5,-
But by definition we also have
[T()]le, = [Tl [v]B,,
so ¢ [T]s, = P5' ¢, c2[T]B,Pp,—p, as required. O

You need to check carefully that the order of matrices matches what bases are being used:
alTls, = Pal_,@ o |T1B,Ps,— B, can be applied to a coordinate vector given in basis Bj.
Then Pp,_,p, can act on it: it takes a coordinate vector in basis B; and turns it into a coordinate
vector with basis By. Then ¢,[T]p, can act on that one: it takes a coordinate vector with basis
By and gives you the image of that vector, written in basis C5. Then P511_>C2 turns that into a
coordinate vector with basis C7. And on the other side of the equation, ¢, [T, just does it all in
one step: takes a coordinate vector with basis By and gives you the image of that vector written
in basis (.

As we in general have different spaces for domain and codomain, the base change formula looks
like

A= Q1A,P.

with different base change matrices P and @, in the different vector spaces.
Example 8.55: We worked out matrices for the projection S: R? — R with S ((3})) = 21:
A= (1 O) with respect to the standard basis for R? and standard basis 1 for R,

C= (1 1) with respect to basis B = {v; = (1),vs = ({)} for R? and standard basis for R.
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We worked out the base change matrix

0 1
P=Py 5= ,
_ (1 _1)

A=CP

Lo )

(here @ =1is a 1 x 1 identity matrix, as we are not changing the basis in R).

and indeed,

Corollary 8.56: (Base change for square matrices)
If T:V — V and By, By are bases for V, then

[T]Bl = P§11—>B2 [T]32P31—>BQ'

PrOOF. It follows immediately from the previous result, we are just using the same bases for
both sides of the map. O

In nicer notation, if the base change matrix is P = Pg,_,p,, then

Ay = P1A,P.

Here we have the same base change in both domain and codomain.
This relationship between matrices is very important, and so we give it a name:

Definition 8.57: Two square matrices A and B are similar if they represent the same linear

map with respect to different bases, or equivalently if there exists an invertible P such that
A= P 'BP.

Example 8.58: We saw that the map
T((5)) = (28, )-

has matrices

1 1

A= < 0 4) with respect to the standard basis,
20 . .

C = (0 3) with respect to basis B = {vy = (}),v2 = (3)}.

We worked out the base change matrix

2 -1 11
P=Pg ,p= ith Pil =

A=pPlcp

(-GGG )

So A and C are similar matrices.

and indeed,

Similar matrices have several properties in common.
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Proposition 8.59: Similar matrices have the same determinant.

PRrROOF. If A = P~!'BP with P invertible, then
det A = det(P~'BP) = det P! det Bdet P = det(P~'P)det B = det I,,det B = det B. [

Example 8.60: From before, we have

1
det A = |

detC = |2
0

Proposition 8.61: Similar matrices have the same trace.

PrOOF. Exercise. Use tr(AB) = tr(BA), which you should prove first (by looking at elements).

O

So as any matrix which represents a linear map has the same determinant, we can define

Definition 8.62: Let T: V — V be a linear map from a finite dimensional vector space to
itself. Then the determinant of 7T is the determinant of any matrix which represents T with
respect to some basis B. The trace of T is the trace of any matrix which represents 7.

By the previous results, these is a well-defined concepts, as all these matrices have the same
determinant and trace. Note that this only works for a linear map from one vector space to itself,
in the same way as determinant and trace are only defined for square matrices.

Study guide.
Concept review

<&

SO0 00

Skills

Base change matrix, inverse of base change matrix.

Base change from “other” basis to standard basis.

Base change for matrices (both square and not square).
Relationship between different matrices for the same linear map.
Similar matrices.

Determinant and trace of a linear map.

Find a base change matrix from one basis to another (either directly, or using an inverse
matrix).

Find the correct equation for two matrices for the same linear map and the corresponding
base change matrices.

Find the determinant and trace of a linear map.

G. Linear Maps: Study guide collation

Just putting together all the study guides from the different sections.

Concept review.

<

<&
o
<
<&
<&

Linear map.

Domain and codomain.

Composition of maps.

Zero map, identity map.

Linear map is determined by values on a basis.

Build up a repertoire of and intuition for linear maps.
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(R R R IR VIR e IR - R IR BRI * B - IR e IR SR IR O IR IR e B R

<

Kernel and image of linear map.

Properties of kernel and image.

Rank and nullity of linear map.

Relationship between rank and nullity of a linear map.

Injective and surjective functions.

Behaviour of injectivity and surjectivity under composition.
Isomorphisms and inverses.

Relationship between injectivity and surjectivity for maps from a vector space to itself.
Uniqueness of inverses.

Inverse of a composite.

Conditions for vector spaces to be isomorphic.

Linear maps as matrix transformations.

When to use different bases for domain and codomain, and when to use the same basis.
Identity and dilation have the same matrix with respect to any basis.
Matrix of composite map and matrix of inverse map.

Base change matrix, inverse of base change matrix.

Base change from “other” basis to standard basis.

Base change for matrices (both square and not square).

Relationship between different matrices for the same linear map.
Similar matrices.

Determinant and trace of a linear map.

Skills.

<&

LR R R IR IR IR IR R IR o

Determine whether a function is a linear map.

Find a formula for a linear map given values on a basis.

Find the kernel and image of a linear map.

Find bases for kernel and image of a linear map.

Find rank and nullity of a linear map.

Determine whether a map is injective or surjective.

Find inverses to isomorphisms.

Find an isomorphism between vector spaces of the same dimension.

Find the matrix for a given linear map with respect to given bases.

Find the coordinate vector of the image of some vector under a linear map.

Find a base change matrix from one basis to another (either directly, or using an inverse
matrix).

Find the correct equation for two matrices for the same linear map and the corresponding
base change matrices.

Find the determinant and trace of a linear map.
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Eigenvectors and Eigenvalues

A. Definitions

We have seen that linear maps can be represented as matrices with respect to different bases. We
will now look at finding a very nice basis for a linear map. We will start with a definition. In this
whole chapter, we will only consider linear maps from a space to itself, corresponding to square
matrices.

Definition 9.1: If T': V — V is a linear map, then v # 0 € V is called an eigenvector with
eigenvalue ) if T'(v) = Av.

So an eigenvector is a vector whose “direction” is not changed by the linear map. As T is linear,
if v is an eigenvector, then any multiple of v is also an eigenvector with the same eigenvalue:

T(pw) = pT'(v) = pAv = A(uv).

CAREFUL: We do not count v = 0 as an eigenvector, because T'(0) = 0 = A0 for any A. So it is
important to remember that eigenvectors have to be non-zero.

Examples 9.2: a) For any scalar A\, the map T'(v) = Av has any vector as an eigenvector, with
eigenvalue .
b) We saw earlier the map

This satisfies

so we have eigenvector (1) with eigenvalue 2 and eigenvector (}) with eigenvalue 3.

[Kernel means 0 as eigenvalue] For any map 7: V — V, if v € Ker(T), then T'(v) =
0 = Ov, so any non-zero vector in the kernel of T is an eigenvector with eigenvalue 0. This
means that 0 is an eigenvalue of T if and only if 7" has non-trivial kernel, if and only if T'
is not injective.

d) Consider the map

x1 —2x3
T ((3”2)) = (3:1+2x2+w3)
3 z1+3x3

which has matrix

and let
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We work out

so T has eigenvectors v, and ve with eigenvalue 2, and v3 with eigenvalue 1. Note that any
linear combination of v; and wvs is also an eigenvector with eigenvalue 2:

T(avy + bvg) = aT'(vy) + T (v2) = 2avy + 2bvg = 2(avy + bug).
This leads us to a general result:

Proposition 9.3: (Eigenspace)
Given a linear map T:V — V with some eigenvalue X\, then the set of eigenvectors of A,
together with the 0 vector, form a subspace Vy of V.

Proor. Exercise: we have seen all the ingredients we need in the examples above. O

Definition 9.4: This subspace V), is called an eigenspace of 7'

Careful! We have a separate eigenspace per eigenvalue, not one eigenspace for everything together!
This is very important!

Examples 9.5: In the same examples as above, we have:

a) T:V — V with T(v) = Av has V) = V: the whole space V is one eigenspace.
b) The map

T(() = (205, )

has eigenspaces

[Kernel is 0-eigenspace] For any map T: V — V, we have V; = Ker(T).

1 —2x3
T((zg)) = (x1+2932+:b3)
T3 T1+3x3

d) The map

with

has eigenspaces

Va = {v1,v2) = Span(vy, va)
Vi = (v3).

Corollary 9.6: (Isos via eigenvalues) T: V — V is an isomorphism if and only if 0 is
not an eigenvalue of T'.

PRrROOF. Vy = Ker(T), so Ker(T') = 0 if and only if 0 is not an eigenvalue. O
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Study guide.
Concept review
o Eigenvalues, eigenvector.
o Eigenspace.
o Connection of kernel with eigenvalues/eigenspaces.
¢ Connection of isomorphisms and eigenvalues.

Skills

o (next section)

B. Finding eigenvalues: characteristic polynomial

So how do we find eigenvalues and eigenvectors? Recall

Lemma 9.7: (Determinant finds isos.)

IfV is finite dimensional, a linear map T': V. — V is an isomorphism if and only if det(T) # 0.
Equivalently, if A is a matriz for T with respect to some basis, then T is an isomorphism if
and only if det(A) # 0.

PROOF. Recall that det(7T') is defined as det(A) for any matrix A representing 7', so the above
two statements really are the same. This is Theorem 3.55. g
Corollary 9.8: The same T as above has Ker(T') = 0 if and only if det(T") # 0.

PRrOOF. By “check one get one free for isos” (Proposition 6.13), we know that T is injective
if and only if it is surjective. And by “injectivity via kernels” (Proposition 8.24) we know that
Ker(T) = 0 if and only if T is injective. O

So now we can prove:

Theorem 9.9: (Eigenvalues are the roots of the characteristic polynomial.)

If T:V — V is a linear map, then X is an eigenvalue of T if and only if det(A\id — T) = 0.
Equivalently, if A is a matriz for T with respect to some basis, then X\ is an eigenvalue of T
if and only if det(AI — A) = 0.

PROOF. We have

Jv # 0 such that T(v) =\
= Jv # 0 such that Aw—Tw)=0
= Jv # 0 such that (ANid—-T)(v) =0
= Jv # 0 such that v e Ker(Aid — T')
= Ker(AMid—T) # 0
- det(Nid — T) = 0

To justify the second assertion, we have to show that it does not matter which matrix representation
we choose. Suppose A and B are two matrices for T with respect to different bases. Then there is
a base change matrix P (which is invertible) so that A = P~!BP. Then

det(\ — A) = det(\ — P"'BP)
= det(P~'(\ — B)P)
= det P~ det(\M — B) det P
= det(P~'P)det(\ — B)
= det(\ — B).

So this quantity is not dependent on which matrix representation of 7" we choose.
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Really what is behind this is that determinant does not change under base change, and the identity
map has the identity matrix with respect to any basis, so if we change the basis for T" to go from
A to B, we might as well change the basis for id as well, and we still get the identity matrix. O

Definition 9.10: Given T: V — V, the characteristic polynomial of T is xr(t) =
det(tid — T'), or if A is a matrix representing 7', then x7(t) = xa(t) = det(¢tI — A).

So the theorem above shows us that A is an eigenvalue of T if and only if A is a root of the charac-
teristic polynomial of T. We also saw above that it does not matter which matrix representation
of T we take.

So

Fact 9.11: The eigenvalues are exactly the roots of the characteristic polynomial.

Why is det(t — A) a polynomial?

Example 9.12: If A = <a
c

b
) is 2 x 2, then
d

t—a —b

det(tI — A) = d
et

=(t—a)(t—d)—bc=1t>—(a+d)t+ad—bc

is a polynomial of degree 2.

As we defined determinants “by induction” as linear combinations of determinants of smaller
matrices, this inductively shows that det(t/ — A) is a polynomial in ¢ of degree n, where A is an
n X n matrix.

So any n x n matrix has at most n eigenvalues.

Here are a few more examples for you of working out eigenvalues:

Examples 9.13: a) not lectured, extra worked example

If
A:<1 1)
2 4
t—1 -1

+2 t—4
=(t—1)(t—4)+2=t>—5t+6=(t—2)(t—3)

then

Xa(t) = det(t] — A) =

so the eigenvalues of A are 2 and 3, as we saw above.

b) Consider
R= (0 1) :
1 0

If we first think of this geometrically: if we view it as a map R? — R2, then the first standard
basis vector e; = () is mapped to ({) = ez, and es is mapped to —e;. So this is a rotation in
R? by 90° anti-clockwise. We should expect it to have no eigenvalues.

We work out the characteristic polynomial:

Xr(t) = det(t] — R) = ! 1 =t +1

This has no real roots, so indeed it has no real eigenvalues. (We will talk about complex
eigenvalues later.
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Warning: Don’t forget to change the signs of the entries in the matrix when you write down
the entries of det(t — A).

For some matrices, we can just read off the eigenvalues from the diagonal.

Proposition 9.14: (Eigenvalues of diagonal and triangular matrices)
If A is

(i) a diagonal matriz, or

(i) an upper triangular matriz, or
(iii) a lower triangular matriz,

then the eigenvalues of A are exactly the diagonal entries.

PrOOF. By Proposition 3.49, the determinant of an upper or lower triangular matrix is the
product of diagonal entries. So if A has diagonal entries a;;, then tI — A has diagonal entries
(t — ai;), so xa(t) = det(tI — A) = (t — a11)(t — aaa) - -+ (t — ann), which has roots the diagonal
entries of A. This applies to any of the three cases. O

Proposition 9.15: Similar matrices have the same eigenvalues and characteristic polynomial.

PROOF. If A and B are similar, there exists an invertible P such that A = P~'BP, so
xa(t) =det(tI — A)
= det(tI — P"'BP)
= det(P~'(tI — B)P)
= det P~ det(tI — B) det P
= det(P~'P)det(tI — B)
= det I det(tI — B)
= x5(1).

So they have the same characteristic polynomial. Since the eigenvalues are exactly the roots of the
characteristic polynomial, A and B also have the same eigenvalues.

You can also think of it this way: A and B are similar if and only if they represent the same linear
map, and characteristic polynomial and eigenvalues are properties of linear maps, so they don’t
change when we look at the same linear map. (|

So now we want to know how to find eigenvectors. Using a similar argument as for eigenvalues, we

see that v # 0 is an eigenvector for T with eigenvalue X if and only if (Aid — T')(v) = 0.

Lemma 9.16: (Eigenspace as kernel)
For a linear map T: V — V, the eigenspace V) = Ker(Aid — T).

PROOF. From the above, we see that v € V), if and only if v € Ker(Aid — T). O

So since we already know how to find elements of and/or bases for a kernel, we can now find
elements of and/or bases for eigenspaces.
So, to summarise:

To find eigenvalues and eigenvectors of a matrix A, we
o calculate the characteristic polynomial x 4(t) = det(¢t — A);
o factorise the characteristic polynomial to find its roots, which are the eigenvalues.
o For each eigenvalue \ separately, we find a basis of Ker(AI — A).
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Examples 9.17: a) Consider

for which we worked out
xa(t) = (t=2)(t=2)(t - 1),
so the eigenvalues are 2 and 1.
Eigenvectors for A = 2:

-2 0 -2 0 0 O
A-2I=11 0 1 |— |1 0 1
1 0 1 0 0 0

. . 1 0 . . .
so a basis for V5 is v = ( 01 ), Vg = ((1)) This means that a general eigenvector for eigenvalue

S
2is ((£).

Eigenvectors for A = 1:

-1 0 -2 1 0 2
A-I=11 1 1 |— |0 1 -1
1 0 2 00 0

. . -2
so a basis for V] is v3 = ( :11 )
Note that eigenvalues need not be integers - we just often have them as integers in exercises so
that it’s easier to enter in Numbas. In real life, in fact the matrices may not even have integer

entries of course.

Let A = <2 g),then xa(t) =

are 24/3 and —24/3.

So we now work out the eigenvectors: for A\ = 2\/5, we find the kernel of

23 3 1 -
A_Ngl_< 4 —2\/§>_’<0 0)

t -3

4l t2—12 = (t—24/3)(t+2+/3), so the eigenvalues

V3

. . o . 3
so the eigenvector is < i ) , or if we want it without fractions, we can use ( 5 )

For A = —2+/3, we find the kernel of

A+2\/§I—<2\/§ 3>—><1 \?)
0

4 2V3 0
-3
so the eigenvector is ( ;f> .

Proposition 9.18: (Eigenvalues and eigenvectors of powers of a matrix)
If an n x n matriz A has eigenvector v # 0 with eigenvalue X, then AF has eigenvector v with
eigenvalue \¥, for any natural number k.

PROOF. If Av = Av, then A%v = A(A\v) = A2, so by induction A¥v = A(NF~1v) = Ao, O
Proposition 9.19: (Eigenvalues and eigenvectors of inverse)

If A is an invertible matriz, then A~' has the same eigenvectors as A, with inverses of the
corresponding eigenvalues.
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PrOOF. If Av = M for v # 0, and A is invertible, then A # 0 (c.f. isos via eigenvalues,
Corollary 9.6). Then

Av =l
= v=A"1v
1
= X = A_lv. |:|

Remark 9.20: Notice the difference between taking powers, say squaring, and taking the inverse.
Taking the inverse is a two-way operation, because (A~1)~! = A. So, if A is invertible, then v is
an eigenvector of A if and only if it is an eigenvector of A~!.

But for squaring, it is only a one-directional statement: if v is an eigenvector of A, then v is also
an eigenvector of A2, But A2 may have other eigenvectors, which A does not have.

-1 0 1
For example: A = ( 0 1) has eigenvalues —1 and 1, with eigenvectors e; = <0> for —1 and
0 . . .
eg = ) for 1. So there are two separate one-dimensional eigenspaces for A.
9 0 . . . .
But A* = 0 1) which has eigenvalue 1, and every vector is an eigenvector. So for example

1
v = ) is an eigenvector for A%, but it is not an eigenvector for A. The eigenspaces have been

combined to be for the same eigenvalue, which gives a 2-dimensional eigenspace - this is the sum
of the two previous eigenspaces (which is bigger than the union).

This corresponds to the fact that you can’t undo squaring: you can’t tell if the 1 came from (—1)
or (+1)%

2

Study guide.
Concept review

Characteristic polynomial, and its link to eigenvalues.

Eigenvalues of diagonal and triangular matrices.

Relationship of eigenvalues of similar matrices.

Eigenspace as kernel of a particular linear map.

Eigenvalues and eigenvectors of powers or inverses of a map/matrix.

SO0 00

Skills

Find the characteristic polynomial of a map/matrix.
Find the eigenvalues of a map/matrix.

Find the eigenvectors of a map/matrix.

Find the eigenvalues of an inverse matrix.

SO0 0

C. Diagonalisation

We started by saying that we want to find a nice basis for a linear map. Eigenvectors help with
that.

Proposition 9.21: (Basis of eigenvectors gives diagonal matrix.)
If vy, v9,...,v, is a basis for V consisting of eigenvectors for T: V. — V| then the matriz for
T with respect to this basis is diagonal.
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PROOF. Suppose T'(vy) = Apvr (where the Ay are not necessarily distinct). Then using the
definition of a matrix representing a linear map, we get

A 0O O - 0
0 X O 0
A=
0 0 A1 O
0 0 0 An
which is diagonal. O

This is the nicest form we can expect from a linear map: it tells us exactly in which directions the
linear map dilates (stretches/shrinks) vectors by exactly how much.

However, we can’t always expect to get such a nice form. We’ve already had one example where
there were no real eigenvalues. But that is not the only problem.

Example 9.22: Consider the map which has matrix

1 -3 2
A=1]1-1 -5 6
2 =20

with respect to the standard basis. Then
t—-1 3 =2
xa®)=| 1 t+5 —6|==13(t+4).
-2 2 t

So 0 and —4 are eigenvalues. We work out eigenvectors, first for A = 0:

1 -3 2 1 -3 2 1 0 -1
-1 -5 6|]— |0 -8 8 |—|0 1 -1
2 =20 0 4 -4 0 0 O

(doing row operations to reduce to echelon form)

. . (1
so a basis for Vj is (%)

For A = —4: (swap first two rows for easier calculations)
5 -3 2 1 1 -6 1 1 -6 1 0 -2
A+4=|-1 -1 6]— |0 -8 32|— |0 1 —4]— |0 1 —4
2 -2 4 0 —4 16 0 0 O 0 0 0

so a basis for V_4 is (%)
We only have 2 linearly independent eigenvectors, so we cannot hope to make a basis for all of R?
out of these.

The aim now is to investigate this issue, and come up with some situations where we know we will
be able to find a basis of eigenvectors.

Definition 9.23: Given an eigenvalue A for 7', the algebraic multiplicity of )\ is the power
of the linear factor (¢ — \) in the characteristic polynomial, and the geometric multiplicity
of A is the dimension of the eigenspace V).

Example 9.24: For

1 -3 2
A=|-1 -5 6
2 =20
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eigenvalue 0 has algebraic multiplicity 2 and geometric multiplicity 1, and eigenvalue —4 has
algebraic and geometric multiplicity 1.

We see immediately that

If A is an eigenvalue, then

¢ algebraic multiplicity > 1 and
© geometric multiplicity > 1.

Otherwise A would not even be an eigenvalue. We will see later that geometric multiplicity <
algebraic multiplicity.

We saw that similar matrices have the same eigenvalues and characteristic polynomials, so they
have the same algebraic multiplicities. We can’t expect them to have exactly the same eigenvectors,
but they do have something in common about their eigenspaces.

Proposition 9.25: Similar matrices have the same eigenspace dimensions, i.e. the same geo-
metric multiplicities.

PROOF. Let A = P~'BP for P invertible. We have already proved that A and B have the
same eigenvalues. Let V) be the A-eigenspace of A, and W) be the A-eigenspace of B. Then

Av =\
= P 'BPv =)\
= B(Pv) = A(Pv).

So v is an eigenvector for A with eigenvalue A if and only if Pv is an eigenvector for B with
eigenvalue \. Given a basis vy,...,v; of V), then Pvq,..., Py, are all in W), and as P is an
invertible map, these vectors are still linearly independent. You can view this sentence as a
“hidden exercise”: is it clear to you why the conclusion of this sentence is true? If not, see if you
can work through it.

So dimWy > dimVy. We can do the same with a basis wy,...,w; for Wy and P~!, giving
dim V) > dim W). So the dimensions are the same. O
What is really going on is that the restriction of P to V) gives an isomorphism P’: V), — W,.
If you’re interested in making that more precise:

Consider the restriction of Tp to Vy, i.e. S: Vi — V with S(v) = Pv, but we’re only allowed to
use v from Vy, not all of V. We worked out above that then Im S < W), i.e. S(v) lands in W).
Then you can work out that Ker S = Ker P n V). This is always the case for any restriction. So
Ker S = 0, and S is an isomorphism from V) to its image. Then by rank-nullity, r(S) = dim Vj,
but we also know Im S < W), so dim V), < dim W),. Then you can either do it all again with A,
B swapped, or you can show directly that all of W) is in the image of S by saying w € W) has
P~ 'we Vy, so S is surjective onto Wy.

Let’s start with a definition of what we are aiming for.
Definition 9.26: A linear map 7: V — V is diagonalisable if there exists a basis for V'

such that the matrix for 7" with respect to this basis is a diagonal matrix.
An n x n matrix A is diagonalisable if it is similar to a diagonal matrix.

Recall that this means that there is some invertible P (a base change matrix) such that A =
P~'DP, where D is diagonal. Another way to put diagonalisability is

Theorem 9.27: A linear map T: V — V is diagonalisable if and only if there is a basis of
V' consisting of eigenvectors of T.

PROOF. We already saw above (Prop. 9.21) that if we have a basis of eigenvectors then the
corresponding matrix is diagonal. Conversely, if vy,...,v, is a basis which gives us a diagonal
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matrix with entries A1,...,Ax on the diagonal, then T'(vy) = Agvr by definition of a matrix
representing a linear map, so each vy is an eigenvector of 7. O

Let us make a first step towards achieving this goal.

Proposition 9.28: (Evectors for distinct evalues)
For a linear map T:V — V|, if v1,...,v; are eigenvectors with distinct eigenvalues, then
they are linearly independent.

ProoOF. We have T'(v;) = A\w;, with all \; distinct. Suppose that vy,..., v, are linearly
dependent (so we are aiming for a contradiction). As the set of one vector v is linearly independent
(as v; # 0), there must be some largest m such that vy,...,v,, are linearly independent, but
V1. .-y Um,Um+1 are linearly dependent. Because of our assumuption, m + 1 < k. Then there exist
scalars such that

H101 + o F U Um + U4 1Vm41 = 0.
Applying T to this vector gives

/141)\1@1 + 4+ Nm)\mvm + ,U/m+1>\m+1vm+1 =0.
If we now multiply the first equation by A,,+1 and subtract that from the second equation, we get

p1(A1 = Amgp)v1 + -+ (A — A1)V + 001 = 0.

But as all the \; are distinct, and v4, ..., v,, are linearly independent, this implies that yy =--- =
tm = 0. Then we also get ;-1 = 0, which contradicts our assumption that vy,...,v,11 are
linearly dependent.

So in fact, vy, ..., v are linearly independent. O

Summary: Suppose the vectors are linearly dependent, and look at the “switch”: where does it
go from lin indep set to lin dep set. Have a dependecy relation, and eliminate the last vector by
combining “apply 7”7 and “multiply by A,,+1” and subtracting both. This gives contradiction.

(%)

has eigenvalues 2 and 3, so the corresponding eigenvectors (1) and () are linearly independent.

Examples 9.29: a)

b)
5 1 3

A=|0 -1 0

0o 1 2

0 1
has eigenvalues —1 with evector ( 31)7 2 with evector ( 01> and 5 with evector (é). So the

previous result tells us that the set of these three vectors is linearly independent. As it is a set
of three vectors, this makes it a basis of R? (by “check one get one free for bases”, Prop. 6.13).

0 0 -2
A=|1 2 1|,
1 0 3

. . . -1 0 . . .
has eigenvalue 2 with eigenvectors vy = ( 0 ) and vy = ((1)), and eigenvalue 1 with eigenvector

—2 ) . .
v3 = ( 1 ) So the previous result tells us that vy, v3 are linearly independent, and also vz, v3

are linearly independent. The result does not tell us anything about the eigenvectors for the
same eigenvalue 2, but we chose them to be linearly independent.
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Corollary 9.30: IfdimV =n and T: V — V has n distinct eigenvalues, then T is diagon-
alisable.

Examples 9.31: Examples a) and b) above have distinct eigenvalues, so they are diagonalisable.
¢) does not have distinct eigenvalues, so this result does not tell us whether it is diagonalisable or
not.

But even when we have some repeated eigenvalues, we have a chance of diagonalisation, as we
saw in an earlier example. When does it happen that we don’t have enough linearly independent
eigenvectors? Clearly then some of the eigenspaces are not big enough. But how big can they get?

Proposition 9.32: (geometric mult < algebraic mult)
For a linear map T:V — V and an eigenvalue X of T', the geometric multiplicity of X\ is at
most the algebraic multiplicity of .

PRrOOF. Let V) be the corresponding eigenspace, and let vy, ..., v be a basis for V). So k is
the geometric multiplicity. Extend wvi,..., v to a basis v1,..., v, Vk41,...,0, of V (possible by
Theorem 6.15). Then let A be the matrix for 7' with respect to this particular basis. As the first
k basis vectors are eigenvectors, the first k columns of A have only A in the diagonal entry and the
rest is 0. We don’t know anything about the remaining columns of A.

A0 0 - 0 % -0 %
0 A 0 - 1w e

A 0 _()\Ik *>
0 0 * * 0 =
: X 3 P 3

Through consecutively expanding in the first £ columns, we see that
xa(t) = (t = X)"p(t)

for some polynomial p(t) of degree n—k. So A has algebraic multiplicity of at least k. Since similar
matrices have the same characteristic polynomials and hence the same algebraic multiplicities, this
proves that

geometric multiplicity of A < algebraic multiplicity of A. O

Summary: “Do as best we can” by taking basis for eigenspace as part of the whole basis, then
check what power (¢ — A\) has in the characteristic polynomial for that matrix.

Example 9.33: You can check in all the examples we’ve had (also in the Workbook) that this is
true.

So we see that to have a chance of getting a basis of eigenvectors, we would need the geometric
multiplicities to be equal to the algebraic multiplicities, as the algebraic multiplicities add up to
at most n.

We saw earlier that eigenvectors for distinct eigenvalues form a linearly independent set. Now we
want to show that if we have a basis for each eigenspace and put them all together, then we still
have a linearly independent set.
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Proposition 9.34: (Combining eigenspace bases)
Let T:V — V be a linear map. Let By, ..., By be bases for distinct eigenspaces of T'. Then
the union of these forms a linearly independent set in V.

SKETCH OF PROOF: This proof is very similar to the proof of “evectors for distinct evalues”,
Prop. 9.28. We just have to make a few tweaks. So I'm going to just give you a sketch, you can
fill in the details.

To fix some notation, let the ith eigenspace have eigenvalue \;, and let B; = {v, 4, . .. ,vfi }. So we
put a superscript which tells us which basis the vector is in, and the subscript counts the vectors
in a given basis, and B; has [; elements. Notice that no vector can appear in two bases at once,
since all these vectors are eigenvectors and each eigenspace has a different eigenvalue.

Supppose the set of all vectors is linearly dependent. As before, this means there is some m
such that the first m vectors on the list are linearly independent, but the first m + 1 are linearly
dependent. So we have some dependence relation between the vectors. If the last vector on the list
is the first vector in a new eigenspace basis, we can use the same method as before to show that
all coefficients must be 0. So let’s assume the last vector on the list is somewhere in the middle of
an eigenspace basis:

AL+ fn 1 V] V) fng1 V) = 0
Then applying T to this, and subtracting A; times the original equation, we get
1 (A1 — A1+ e (Nict = A) + fm— 1 (N — AU+ g1 (A — )\i)U;-H =0,

i.e. all the contributions from the same eigenspace as the very last vector disappear. But we know
that the vectors that still have non-zero coefficients are linearly independent, so (11 = -+ = piy—; =
0. This leaves us with

[m—j 410} + -+ + P + fims10h g =0,
but now these vectors are all in the basis B;, so they are also linearly independent, so all the

remaining us are also zero.
So the set of all bases of the distinct eigenspaces is linearly independent. O

Example 9.35: Example ¢) we had before:
0
A=|1
1

. . . -1 0 . . .
has eigenvalue 2 with eigenvectors v; = ( 0 ) and vy = ( ! ), and eigenvalue 1 with eigenvector

-2
vy = ( ! ) As we chose v; and vs to be a basis of the 2-eigenspace, this result tells us that

v1, V2, v3 is a linearly independent set (and so a basis for R?, by “check one get one free for bases”,
Prop. 6.13.)

Theorem 9.36: (Diagonalisability via geometric multiplicities)
A linear map T:V — V with dimV = n is diagonalisable if and only if the sum of all
geometric multiplicities of the distinct eigenvalues is n.

Proor. If T is diagonalisable, we have a basis of eigenvectors. Each eigenvector is in some
eigenspace basis, so the sum of geometric multiplicities of distinct eigenvalues is at least n. But since
geometric multiplicities are at most the algebraic multiplicities, the sum of geometric multiplicities
is also at most n, so it is equal to n.

Conversely, if the sum of geometric multiplicities is n, then the union of all the bases of all the
distinct eigenspaces has size n, so (by Prop. 9.34) is a linearly independent set of size n, hence a
basis by “check one get on free for bases”, Proposition 6.13. |
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As well as knowing whether a matrix is diagonalisable, we might also want to know what the
diagonal form is, and what the base change matrix is. We can in fact already infer that from the
results we've discussed so far, but let us summarise it:

Theorem 9.37: (Diagonal form and eigenvector base change)

If T:V — V s diagonalisable, then it’s diagonal form D has all eigenvalues of T on the
diagonal.

Furthermore, if A is the matriz for T in the standard basis (for V where this makes sense),
and P is the matriz whose columns are the eigenvectors of T, corresponding in order to the
diagonal entries of D, then D = P~'AP.

PROOF. Essentially the whole statement follows directly from Theorem 9.27: T is diagonalis-
able iff there is a basis of eigenvectors. To see that we have the base change the correct way round:
if F is the standard basis and B the eigenvector basis, then P = Pg__, g, so

[T]s = Pe—3B[T]ePs—E
ie. D =P AP O

Examples 9.38: a) Revisiting

and then

b) Revisiting

5 1 3
A=|0 -1 0],
0O 1 2
we have
0 1 1
P=13 0 0
-1 -1 0
and then
-1 0 0
0 2 0|=D=P'AP.
0 0 5
¢) Revisiting again
0 0 -2
A=1[1 2 1|,
1 0
we have eigenvector base change matrix
-1 0 -2
P=10 1 1
1 0 1
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and then
2 0 0
0 2 0|=D=P AP
0 0 1

(=) )

-1
has eigenvalue 2 with eigenvectors v, = ( 9 ) and vo = (
- (1)
V3 = % .

If we are working with real numbers, this is the best we can hope for, as we don’t know whether
the map has “enough eigenvalues”, i.e. whether the sum of algebraic multiplicities is n. We can do
a little better if we work with complex numbers, as we will see in the next section.

), and eigenvalue 1 with eigenvector

Having diagonalised a matrix not only tells us more about the properties of the linear map, but
also let’s us calculate powers more easily.

Proposition 9.39: (Powers via diagonalisation)

If A is a square matriz which is diagonalisable as A = PDP~' with D diagonal, then AF =
PD*P~1, where D* is diagonal with diagonal entries the kth powers of the diagonal entries
of D.

PROOF. Exercise. O

Let’s have a little summary from the previous few sections of properties that are invariant under
base change, or properties that stay the same for similar matrices :

Properties of linear maps (i.e. Similarity invariants)

Property Explanation
Rank dimension of image
Nullity dimension of kernel
Invertibility or “being an isomorphism”
Determinant originally defined for matrix, now
shown det(P~!AP) = det A.
Trace originally defined for matrix, now
shown tr(P~1AP) = trA.
Eigenvalues
Characteristic polynomial | so also algebraic mult of evalues
Dimension of eigenspaces | i.e. geometric mult of evalues

Study guide.
Concept review

o Diagonalisation of a map/matrix.

o Algebraic and geometric multiplicities of eigenvalues, and their relationships.
o Different conditions for a map/matrix to be diagonalisable.
¢ Relationship of eigenvectors for distinct eigenvalues.
Skills
o Work out the algebraic and geometric multiplicities of eigenvalues.
o Determine whether a map/matrix is diagonalisable.
o If the map is diagonalisable, find the diagonal form.
o If the map is diagonalisable, find a basis which consists of eigenvectors.
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D. Complex eigenvalues

All the theory we have developed about eigenvalues and eigenvectors of course works for linear
maps between complex vector spaces as well. If we are working over C, we should not expect
eigenvalues to be real. However, we saw that even for real vector spaces, sometimes a linear map
might not have real eigenvalues. But the main important fact about complex numbers is that

Very Important Fact 9.40: (Fundamental Theorem of Algebra)
Any polynomial can be factorised completely into linear factors over C.

(Not proved in this course. A very nice proof uses complex analysis.)
This means that we always have “enough eigenvalues” over C: any polynomial of degree n will
have exactly n linear factors, so (counting with multiplicity) it will have exactly n roots.

Example 9.41: Recall the 90° rotation

with characteristic polynomial

Xr(t) = det(tI — R) =

1
|=t2+1
t

This has no real roots, but it does have complex roots +i. If we now think of R? via the Argand
plane as C, which is a real vector space of dimension 2, then

(y) corresponds to x + 1y,
() corresponds to 1 + 0i on the z-axis,
(9) corresponds to 0 + i on the y-axis,
(’01) corresponds to — 1 4 07 on the negative z-axis,
so under this correspondance R(1) = ¢ and R(i) = —1, which is exactly a 90° rotation of the

Argand plane.

So we can view complex eigenvalues of real matrices as telling us something about the rotational
properties of the matrix.

Similarly, the general rotation matrix

cosf —sinf
Rog=1".
sinf  cosf
which rotates the plane anti-clockwise by 6 has characteristic polynomial

t —cosf in 0
XR, (t) = (?OS S = (t —cos0)? + (sinf)? = t* — 2cos Ot + 1
—sinf t—cosd

=t — (e et +1=(t—ef)(t—e)
so this has eigenvalues e?’ and e~*, which correspond to the complex numbers we get when we
rotate 1 by 6 anti-clockwise or clockwise respectively.

. 0, —ib .
Here we are using e’ = cosf + isinf, which gives cosf = ¢ +2“ . In lectures we’ll draw an

Argand plane here to demonstrate.

We see that there are two complex eigenvalues in these examples but it’s only one rotation. We
can look at the reasons for this from several different viewpoints. One is this:
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Proposition 9.42: (Complex roots of real polynomials)
If p is a real polynomial, then any complex roots appear in complex conjugate pairs.

PROOF. Let p(t) = ant™ + ap_1t" "1 + -+ + a1t + ap with all a; € R. Suppose that p(z) = 0
for some particular z € C. Then we look at the complex conjugate Z:

p(Z) =anz" + - +a1Z + ap

=ap2" +---+ a1z +ap because all a; € R, (so @; = a;).
=p(2)
=0.
So if z is a root then so is it’s complex conjugate. O

This shows that the roots have to come in these complex conjugate pairs. How you can make sense
of it geometrically:

Suppose you have R? as the z,y-plane in R3. If you look at it “from above”, so from the side
which has positive z-values, then sending (§) to ({) looks like a 90° anti-clockwise rotation. But
if you look at it from below, then the same mapping now looks like a clockwise rotation.

So when we say that we view R? as C, there are these two inbuilt “viewpoints”, and the charac-
teristic polynomial doesn’t know which we’ve chosen, so it has both these roots.

Here is a totally different way of looking at complex eigenvalues of real matrices:

0
1
map C? — C? (since R? = C?). So given the eigenvalues +i, we can find complex eigenvectors:

. - —1 R1 xi 1 —i 1 —3
R—il = | — | —
1 —3 1 — 0 0

so the eigenvector for 7 is v1 = ().

. i —1 Rl x —4 1 2 1 2
R+il = ) | —
1 1 1 0 0

so the eigenvector for —i is vy = (*11)

-1
Example 9.43: The same matrix R = ( ) can also be viewed as a complex matrix, so as a

If we view a real matrix as a complex matrix like this and find complex eigenvalues and eigenvectors,
we have

Proposition 9.44: (Complex evalues and evectors of real matrices)
If a real matriz A has a complex evalue X with complex evector v, then \ is also an evalue of
A, with evector v.

PROOF. We already know from the previous result that roots of the (real) characteristic poly-
nomial of A come in complex conjugate pairs. But even easier (recall that evector v # 0):

Av =
= Av = Xv
= AT=\-T as A is real. O

Examples 9.45: a) We already saw the 90° rotation R.
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Ry — 0989 —sin@
sinf)  cos®

6

b) A general rotation

0

with evalues A = ¢ = cosf + isinf and e~

ve = (7).

Here is the working out, but not lectured: we need to use e’
cos = “IQ’L;%, and sinf = ‘179_2:7%9. Don’t worry, you won’t be asked to do something this
involved in the exam. But you may well have to do it later in your life! Even possibly in your

job.

) . 6, _—ib i0__—if
i cosf —e?  —sing e R
Rog — eI = . o] = 10 =i il fo—if
sin 6 cosf —e

= cosf —isinf = X has evectors v; = () and

9 = cos@ + isin @, which gives

— < 7(61.6,7 eiw,) 7(7i),(ew N ?w)> using 1 = —
(_Z')(ew _ 6—29) _(619 _ e—l@) 5 i
(e — o=i0)  _(_i)(eif — o—if

— ( ( 0 )~ 0 )> using i(—i) = 1

1 -
— (O 02) using i(—i) =1

—
.

_2 41
has characteristic polynomial (¢t — 4)(¢ + ¢), and eigenvectors v; = ( ) > for ¢ and vy =

The main result of this section is related to the fact that complex polynomials factor totally into
linear factors.

Theorem 9.46: (Complex diagonalisable iff algebraic = geometric mult)

Let T: V. — V be a linear map on a complex vector space V. Then T is diagonalisable
(over C) if and only if the geometric multiplicity of every eigenvalue agrees with the algebraic
multiplicity.

PRrROOF. By the Fundamental Theorem of Algebra (Very Important Fact 9.40), the sum of
algebraic multiplicities is dimV' = n. By “Diagonalisability via geometric multiplicities” (The-
orem 9.36), we know that T is diagonalisable if and only if the geometric multiplicities add to n.
As geometric < algebraic multiplicities (Prop. 9.32) and the sum of algebraic multiplicities is n,
this now happens if and only if geometric = algebraic multiplicity for every single eigenvalue. [

NOTE: This theorem is only true over the complex numbers! This means that the base change
matrix has to be allowed to be complex.

Later on you might learn also about minimal polynomials and Jordan normal form, which are very
good tools to know about a linear map and it’s eigenvalues, eigenspaces and diagonalisability. But
for us, this is all for now.

Study guide.
Concept review
¢ Complex evalue of 2 x 2 matrix: shows rotational properties.
¢ Complex roots of real polynomials.
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<

Complex evalues and evectors of real matrices.
Fundamental Theorem of Algebra.

<

Skills

<

Factorise polynomials into complex linear factors.
Find complex evalues and evectors.
Diagonalise a matrix over C.

S 0

E. Eigenvectors and Eigenvalues: Study guide collation

Just putting together all the study guides from the different sections.

Concept review.

o Eigenvalues, eigenvector.

Eigenspace.

Connection of kernel with eigenvalues/eigenspaces.

Connection of isomorphisms and eigenvalues.

Characteristic polynomial, and its link to eigenvalues.

Eigenvalues of diagonal and triangular matrices.

Relationship of eigenvalues of similar matrices.

Eigenspace as kernel of a particular linear map.

Eigenvalues and eigenvectors of powers or inverses of a map/matrix.
Diagonalisation of a map/matrix.

Algebraic and geometric multiplicities of eigenvalues, and their relationships.
Different conditions for a map/matrix to be diagonalisable.
Relationship of eigenvectors for distinct eigenvalues.

Complex evalue of 2 x 2 matrix: shows rotational properties.
Complex roots of real polynomials.

Complex evalues and evectors of real matrices.

Fundamental Theorem of Algebra.

Skills.

Find the characteristic polynomial of a map/matrix.

Find the eigenvalues of a map/matrix.

Find the eigenvectors of a map/matrix.

Find the eigenvalues of an inverse matrix.

Work out the algebraic and geometric multiplicities of eigenvalues.
Determine whether a map/matrix is diagonalisable.

If the map is diagonalisable, find the diagonal form.

If the map is diagonalisable, find a basis which consists of eigenvectors.
Factorise polynomials into complex linear factors.

Find complex evalues and evectors.

Diagonalise a matrix over C.

[ R SR I VIR I O R IR IR IR O IR C IR IR e IR

<

<

[ R R I VIR O IR O R IRV R
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Inner Products

A. Standard real inner product

You might know from R? or R? the concept of a dot product and the length of a vector:

oIfx=(z))andy=(13), then z-y = x1y1 + z2ys.
o The length is ||z| = 4/2% + 23 (using Pythagoras).
It is very useful to view the dot product as a matrix product of a row vector times a column vector:

U1
T-y= (331 1‘2) ( ) = Z1Y1 + T2Y2
Y2

by the general matrix multiplication rules.
These concepts are easily generalised to R™:

Definition 10.1: The standard inner product (also called Euclidean inner product)
on R™ is a function (—, —): R” x R” — R defined by

w1
w2
<v,w>=va= (vl vy v vn) )
Wn,
n
= VNW1 + voWwg + - + VLW, = Z Vi W; .
i=1

The norm (or length or magnitude) of a vector in R™ is defined as

o]l = /<v, ).

2
Examples 10.2: a) If v = <_31> then |v| = \/22 F(—1)2+3%2+ (—5)?) = /39.

3
b) If v is as above and w = <l4>, then (v,wy=2-(=3)+(-1)-(—4)+3-1+(-5)-0=2.
0
c) It is up to you whether you prefer writing (v, w) or vTw. HOWEVER be careful with the use

of v - w, the “dot product”, as this can sometimes lead to confusion. It is MUCH SAFER to

use vTw, in the matrix multiplication form.

From the idea of length, we might expect this norm to satisfy certain properties, such as:

¢ The norm of any vector is non-negative.
¢ The zero vector is the only vector with norm O.
¢ Multiplying a vector by a scalar multiplies the norm by the absolute value of that scalar.

We might also expect something that resembles a triangle inequality.

We will also see some important propties of the inner product, which are: The inner product

¢ is linear in each entry.
© is symmetric.
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o encodes orthogonality.

Let’s start with the the inner product properties, since we defined the norm using the inner product.

Theorem 10.3: (Inner product properties)
The standard inner product (—, —): R™ x R® — R satisfies:

(1) O+ pv, w) = Xu, w) + uv, wy and v, \u + pw) = Xv, uy + puv, w)y (bilinear)
(it) (v, w) = {w,v) (symmetric)
(111) {v,vy =0, and {v,vy=0<v =0 (positive definite)

PROOF. (i) Matrix multiplication is linear (Prop. 1.67). This gives
o, M+ pw) = vT (M + pw) = Ml u + poTw = Mo, w) + plv, w).

We will get the other statement once we also have symmetry.
(i) (w,w) = vTw = (vTw)T = wlv = (w,v). We are using: transpose of 1 x l-matrix (i.e. a
number) does not change it.
n
Or write it out explicitely as (v, w) = 3 vw;.
i=1

iz
n n

(iii) (v,v) = D vw; = Y (v;)% Squares are always non-negative, and a sum of non-negative
i=1 i=1

terms is non-negative.
Also (v,v) = v} + --- + v2 = 0 if and only if each summand is 0 separately, as they are
all non-negative (so we can’t cancel anything out). This is the case if and only if v =0. O

Remark 10.4: The bilinear property is related to two linear maps we already know:

o Given v € R", we can view v as a (1 x n)-matrix v?, and then the corresponding linear
map is Tyr: R” — R with T,yr (w) = vTw = (v, w). This corresponds to linearity in the
second entry of the inner product.

o The actual process of “viewing v as vI” is in itself a linear map (—)7: R" — ) ,,
sending a vector to a matrix (and a matrix of course in itself also represents a linear
map). (For interest, linking to the future:) You will later see this as a map

T»

v+— (v,—) € V* = { linear maps V — R}.

Here V* is called the dual space of V. This linear map corresponds to linearity in the
first entry.

Example 10.5: Not lectured, explaining above remark.

a) Given v = (%), we have the linear map

Tyr:R" —R with T,r(w) = wy + 2ws + ws.
v1
v2 ) can be seen as the (1 x n)-matrix <v1 Vg ... vn). In some sense we are

Un

saying “taking the transpose (of a matrix) is a linear operation”.

b) Any vector

The inner product properties also immediately give us the properties for the norm:

Corollary 10.6: (Properties of norm)
The standard norm on R™ satisfies:

(i) |v] = 0.
(i) |v] =0 < v =0.
(iii) | Aol = [Af]v].

PROOF. Exercise: use inner product properties. O

It is often useful to remember
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[o]? = <v, v).

Now that we have something like length, we can talk about “making vectors a unit length”.

Definition 10.7: A unit vector is a vector of norm 1. Given v € R”, if v # 0, we can
normalise v to the unit vector mv.

Examples 10.8: a) The standard basis vectors are all unit vectors.
2

2
(A . C e _ 1, _ 1 [ -
b) Ifv = (_35> then its normalisation is u = TV = 39< 3 )

1
1

c) Ifv= < . ) € R”, then its normalisation is %v.
. n

i
In R? (and by extension in R3), we can talk about angles between vectors. Using a diagram in R?,
we can see that, given two unit vectors = () and y = (}} ), we have
T1y1 + Toy2 = y1 = cosb.
If x = (1) is a general vector, then by rotating the plane we still get

T1Y1 + Toys = cosb,

where 6 is the angle between the two vectors which satisfies 0 < 6 < 180°.
Draw a diagram to illustrate, and let z; = cos#q,x2 = sinfy,y; = cosbs,ys = sinfy. Then the
angle 6 between the vectors is (+)(6; — 63). And

Z1Y1 + Tay2 = cos Oy cos by + sin by sin by = cos(0; — 02) = cosb.

In particular we see that
T1y1 + x2y2 = 0 < x and y are perpendicular to each other.

While it does not make entire sense to generalise angles to R”, we are very much interested in this
generalisation of vectors being perpendicular.

Definition 10.9: Two vectors v, w € R™ are called orthogonal exactly when (v, w) = 0.

Examples 10.10: a) The standard basis vectors are pairwise orthogonal.
b) vy = (1) and vo = (%)) are orthogonal in R?:

(v1,v9y=1-1+1-(=1)=0.

Of course in R?, there is only one vector which is orthogonal to a given vector (up to linear
multiples). This is not true in R™:

¢) The vector ( i ) e R3 is orthogonal to any vector which satisfies 21 + 2+ 23 = 0, so for example

—(¢ (% —(1
v = (_1)71}2 = (_1)7?11 + V2 = (_2>
and any other linear combination of v1,vs. You can think of this as the plane orghogonal to
(1)
1.
1

1
d) Similarly in R*, the vector <% is orthogonal to any vector satisfying =1 + x2 + 3 + 4 = 0,

1
which you can think of as a hyperplane with basis

0 it 0
U1 = 0o |),V2 = 0o )»V3 = 1 -
—1 —1 —1
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Here “hyper”plane means “space of dimension one less than ambient space”. We call it hy-
perplane because our most comfortable space is three-dimensional, and in that case we get a
plane.

e) This generalises to R™.

—

Exercise 10.11: Find the vectors which are orthogonal to (

»Jk‘l\')wb—t

) e R5. Hint: use an equation

like we did above.

Using this inner product, we can also determine vectors.

Proposition 10.12: (Inner product detects 0)
For given v € R, (v,wy =0 for all w € R™ if and only if v = 0.

PROOF. Since we have (v, w) = 0 for all w € R™, also (v,v) = 0, which gives v = 0. The other
direction was already proved in “inner product properties” (Theorem 10.3). |

Example 10.13: a) Suppose you want to know “which vectors are orthogonal to everything
in R%”. We are looking for v € R® such that (v,w) = 0 for all w € R®. So the previous
result tells us: only 0.

b) If we have v; and vy such that {(vy,w) = (vg,w) for all w € R™, then we can conclude:

(v, wy = {vg,w)y = {v; —va,wy =0=v; —ve = 0= v = va.

So if we ask: can the line z1 = x5 (i.e. the line generated by the vector u = (1)) in R? have
several vectors which are orthogonal to it? We might know that v; = (}1) is such a vector.
Suppose vs is another. Then
o For w = A(1}), i.e. on the line, we have (v1,w) = (vy,w) = 0.
o We have (v1,v1) = 2, and (va,v1) = a, some real number.
o We know that ( % ) and vy form a basis of R2, so for any v € R2, we can write v = pu+ v,
and then

(ua,v) = p1{va, u) + padva, v1) = 0 + aps
and (v, vy = v, uy + palvy,v1) = 0+ 2us.

Then (%v1,v) = (va,v) for all v € R?. So vy = %v; must be a scalar multiple of v1. So we
have only “one direction” of vector which is orthogonal to the given line.
Of course we could have found this out more easily as well. I just wanted to demonstrate

a kind of way this could be used.

We will now see a very useful property of the inner product which implies the triangle inequality
for the norm.

Theorem 10.14: (Cauchy-Schwarz inequality)
For u,v € R", we have
Cu,v)? < Jufl?|lv]?
(= Ku,v)| < [ull|v] and (u,v) < [ul|lv]).
Equality holds if and only if u = pv for some p e R. (Le. only when w,v are parallel.)

PRrOOF. Consider {u + tv,u + tv) = 0, which is a quadratic polynomial in ¢, and non-negative
as the inner product is positive definite (see Theorem 10.3). This is the main idea and super trick
of this proof! Give it the awe it deserves :-)

We have

{u + tv,u + toy = (u,uy + tlu, v) + v, uy + t2<v, vy = HuH2 + 2tu, vy + HvH2t2.
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The roots of this quadratic are
—2(u, v) & £/ (2(u, v))? — 4fu?]v]?
2[v|? '
Since we know the quadratic is non-negative, it has exactly one or zero roots, so the discriminant
must be non-positive (either discriminant is 0: one real root, or discriminant negative: only complex
roots, no real roots), i.e.

Au, v)* = 4ul?|v]* < 0
which gives
Cu, 0)? < ul?[lo].
Then, taking square roots, we get [(u,v)| < |u]|v], but as {u,v) < [{u,v)|, we can also say
u, 0) < fulv]-

To get equality in the discriminant, we need {(u + tv,u + tv) = 0, which happens if and only if
u+tv =0, i.e. u = —twv for some t. O

Using this, we can prove:

Corollary 10.15: (Triangle inequality for norm)
Given v,w € R™, then |v + w| < |Jv|| + ||w].
ProoOF.
v 4+ w|? = v+ w,v + w)
= [[v]* + 2¢v, w) + [w|?
< |l + 2o [lw] + |lw]? using Cauchy-Schwarz
= (ol + w])?

which implies
Jv+w| < o] + [w]
as both sides are non-negative. O

Study guide.
Concept review

o Standard (Euclidean) Inner Product, norm, and the connection between the two.

¢ Inner product properties: it’s bilinear, symmetric, positive definite.
o Norm properties that we expect from a “length”.
¢ Unit vectors, normalisation of vectors.
¢ Orthogonal vectors. Hyperplane orthogonal to a vector.
¢ Inner product detects 0.
¢ Cauchy-Schwarz inequality.
¢ Triangle inequality of norm.
Skills
o Work out norm of a given vector.
o Work out inner product of two given vectors.
o Use properties of inner product for expansion/manipulation.
¢ Normalise a vector to be a unit vector.
¢ Determine whether vectors are orthogonal.

B. General inner products

The standard (Euclidean) inner product is not the only one on R™. We can generalise this concept.

Definition 10.16: Let V' be a real vector space. Then a (real) inner product on V is a
function (—, —): V x V — R satisfying:
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(1) Qwu+ pv,wy = Mu, wy + pdv, wy and (v, Au + pw)y = Xv, uy + pdv, w) (bilinear)
(ii) <v,w) = {w,v) (symmetric)
(iii) <v,v) =0, and (v,vy =0< v =0 (positive definite)

A vector space V together with an inner product is called an inner product space.

So instead of proving these properties, we just ask them, and call any such function which satisfies
them an inner product.

Examples 10.17: a) Obviously the Euclidean inner product is an example.
b) [Weighted inner product] Let D be a diagonal matrix with positive diagonal entries
dl,dg,...,dn > 0. Then

(v,wy = v Dw = dyvywy + davows + + -+ + dpvnwy

is also an inner product. The first two points are easy to check using v” Dw and matrix
multiplication properties. To see it is positive definite:

(v, vy = d1vi + -+ + dpyv2 =0

because the squares are > 0 and the d; > 0. This sum is 0 if and only if all summands are 0,
so as the d; are strictly positive, this happens if and only if v = 0.

Such an inner product can be useful in a situation or problem where not all the different
directions are “equally good” for something. For example, if you want to move something,
moving it in one direction might be harder or more expensive or more time-consuming than in
another direction. A weighted inner product can incorporate such situations.

¢) A variation of this is to take a real symmetric matrix A with positive eigenvalues, and take
(v,w) = vT Aw. (The proof of this relies on the fact that any real symmetric matrix is diagon-
alisable, which we haven’t proved yet. C.f. Theorem 10.32.)

With the stated result, this is then really the same as a weighted inner product, just that
the weightings are not necessariliy in the « and y directions (or equivalent), but in some other
directions, given by the eigenvectors of the matrix used.

d) If V is the vector space of n x n matrices, then

(A, B) = tr(A”B)

is an inner product.
Exercise: check the three properties in the definition of inner product in this example.
Remember: tr(CT) = tr(C). For positive definiteness, you'll have to look at actual elements.
e) Let V = P,. Then

@)= | paata)da

is an inner product.
(i) Sil(apl () + bp2(x))g(x)dr = a Silpl (z)q(z)dz + bgilpg (z)q(x)dz, and similarly in the
second entry.
(i) §%, p(@)g(z)dz = {_, q(z)p(x)da.
(iii) Silp(x)p(x)dx > 0 because the integrand is non-negative on all of [—1,1]. Why does

Silp(w)p(x)dx = 0 imply p = 0?7 As p(x)? = 0 on [—1,1], we can first conclude that
p(z) = 0 on [—1,1]. But why is it then the zero-polynomial? A polynomial of degree n
has at most n roots, but we have found a whole interval [—1, 1] where it is 0, so it must
be the zero polynommial.

The integral inner product also works on the vector space of integrable (or continuous or differ-

entiable or infinitely differentiable) functions defined on a given interval (if we make the integral

go over the whole integral as well).

f) Let V be a suitable space of random variables. Then

(X,Y) =E(XY)

is an inner product.
Exercise: prove this, using properties of expectation from probability.
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Not lectured: Taking covariance of two random variables also gives an inner product. Check
it with covariance facts.
Such inner product spaces are very important and used in all sorts of areas, ranging from pure
maths via numerical methods needed in mathematical modelling, to quantum physics.

Because of the way we proved everything in the previous section, only using the properties of
bilinearity, symmetry and positive definiteness, all the results still hold. So we can
¢ define a norm corresponding to the inner product, which satisfies all the same properties;
¢ have unit vectors and normalise with respect to the inner product;
¢ have orthogonal vectors with respect to the inner product;
o use Cauchy-Schwarz with respect to the inner product.

Examples 10.18: a) Such different inner products give rise to different lengths. For example, for

30
a weighted inner product on R? with D = (0 Nk we have

{u, vy = 3ugvy + 2ugve

and, for example,
IE =3 1(DII=v2

This can be useful if, for example, we want to include how difficult it is to travel or move
something in a certain direction, and so want to weight the “length” or inner product so that
two vectors with same norm represent travel with the same time or the same amount of energy,
or something similar.
This gives rise to strange “unit circles” as well. In lectures, we’ll draw one.
b) Cauchy-Schwarz still holds for these different kind of inner products, so for the integral one, we

have
flp(:c)Q(:c)dx < \/ flp(x)zdx L o).

E(XY) < /E(X?)BE(Y2).

and also

Who would have thought!

Study guide.
Concept review

¢ General inner product.
o Examples of weighted inner product, matrix inner product, integral inner product.

Skills

o Work out norm of a given vector for different examples of (non-Euclidean) inner products.

o Work out inner product of two given vectors for different examples of inner products.

¢ Normalise a vector to be a unit vector with respect to different examples of inner products.

¢ Determine whether vectors are orthogonal with respect to different examples of inner
products.

C. Orthonormal bases and Gram-Schmidt

With the concept of orthogonal vectors we have seen previously, we might be interested in having
a basis where all the vectors are orthogonal to each other, as we are used to from the standard
basis.

In this section, V' is any real inner product space V with inner product {(—, —).

Definition 10.19: A set of vectors is called orthogonal if the vectors are pairwise orthogonal.
A set of vectors is called orthonormal if it is orthogonal and all vectors are unit vectors (i.e.
have norm 1). A basis which is also an orthonormal set is called an orthonormal basis.
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Examples 10.20: (Using the Standard Inner Product)
First we look at examples with the standard or Euclidean inner product.

a) The standard basis in R™ is an orthonormal basis.
b) v1 = (}) and vp = (%) form an orthogonal set, but they both have length /2. So

1 1
V2 V2
is an orthonormal basis of R2.

c¢) Not lectured. Here is an orthogonal basis of R” (which is not the standard basis):

1 1 1 1 1
1 -1 1 1 1
1 0 -2 2 2
. 0 0 4 4
V1 = 1 ) V2 = 0 P U3 = 0 P Vg = 0 ) U5 = -8 )
0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 1 1
20 20 20
2! 21 21
2 92 22
23 23
cey Vi = 2/(:;3 3 sy Up—1 = 24 5 Unp = 24
_2k—2
0 on—4 on—4
_2n—3 2n—3
0 0 —on—2

Then we can normalise it to get an orthonormal basis (but we won’t show it here).

How does this work: Construct ve so that it is orthogonal to vy, but only uses the first
two entries. This means that when you take n = 2, you can cut off the zeros, and you have an
orthogonal set of size 2 for R2. So it needs 1 + 22 = 0 to be orthogonal to v;.

Then construct vs to be orthogonal to v; and wvs, but only uses the first three entries, so
that it works in R?. So we need x; = x5 to be orthogonal to vo, and 21 + z2 + 23 = 0 to be
orthogonal to v;.

So you continue like this. For v; to be orthogonal to va, v3, ..., vk_o, it needs the same first
k — 2 entries as vi_1. Then to be orthogonal to vi_1, the (k— 1)th entry has to be the negative
of the(k — 1)th entry of vp_;. And then the last non-zero entry (i.e. kth entry) is determined so
that the vector is orthogonal to vy, i.e. the sum of all entries has to be 0. So that last non-zero
entry is —(sum of all previous entries)= —(1 + 20 + 22 + ... + 2~=3) = _2k=2,

Examples 10.21: (Using other inner products) Let’s see a few examples with different inner
products.
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a) [Weighted inner product] If we use an inner product weighted by D = (3 9) as in a previous
example, then the standard basis in R? is not orthonormal any more.

(5):(}))=0 so they are still orthogonal
() =~3

|
(DI =v2

SO

is an orthonormal basis in this inner product space.

Also
(1, (H)=3-2=1
so these two vectors are not orthogonal any more.
Not lectured, but for extra practice/understanding: Instead,

(3):(4))=6-6=0
or
<(%)7 (—13)> =6-6=0
or some other such combination.
b) [Integral inner product on polynomial space] Here is a set of orthogonal polynomials in
Ps, using the integral inner product:

wa) =1, m@) =z pale)= (327 1),

They are the first three Legendre Polynomials. It’s easy to see that (1,2) = 0; you can
check the other conditions (pg,p2y = 0 and {(p1,p2) as well. Remember to integrate over
[—1,1]. You won’t be asked this in the exam, but it’s super useful for a wide range of topics in
your mathematical future.

You see from above that for every n, R™ does have an orthonormal basis. We could ask the other
way round: if a given set is orthogonal, does it have to be linearly indepdenent? The answer is
yes:

Proposition 10.22: (Orthogonal sets are linearly independent.)
If vy,..., v is an orthogonal set of non-zero vectors in the inner product space V , then it is
linearly independent.

PROOF. Summary: take inner product with each vector.
Consider
AU+ - AU =0
and now apply (vy, —) to the equation:

= )\1<U1,U1>+)\2<’U1,’U2>+ +)\n<v1,vk> =0
= /\1<Ul,111>+0 =0
= )\1 =0

because {(v1,v1) = |v1|? # 0.
Similarly applying (v;, —) for all the i = 2,... k gives all other \; = 0. So we have a linearly
independent set. O

So if dim V' = n, then having n orthogonal (or orthonormal) vectors gives us a basis. The good
thing about orthonormal bases is that the coordinates (i.e. the coefficients in front of each basis
vector) can be calculated much more easily than for a general basis.
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Proposition 10.23: (Coordinates for orthonormal basis)
If uy, ..., u, is an orthonormal basis, then for any v, we have

v = (v, u1yug + v, usyus + - -+ + (U, Up Y -

PROOF. As uq,...,u, is a basis, we know that there are some A; such that

V=AU + -+ Apun.

Then
v, ui) = Aqur + -+ 4 App, U;)
= Xiur, uiy + -+ AplUp, wi)
=20+ + 04+ Ay, uip+ 04+ -+ A0
=\
since (uj,u;y = 0 for j <4 and {u;,u;) = 1 for the orthonormal basis. O

This is very different to how we find coordinates for a general basis (which is not orthonormal)!
There we need to know all the basis vectors to be able to find the coordinates. Here, as long as
we know the vector is part of some orthonormal basis, we can find the coordinate in that direction
just using that single vector. (This is a super amazing fact.)

Example 10.24: Recall the orthonormal basis

AN C AN B AN I
uy = % _\/5 1 ,Ug = _% _\/5 _1
4

of R? we worked out above. To find the coordinates with respect to this basis for v = (13 ), we
can calculate:

o A ={v,ur) = %((—4)-1“3-1) =9
o Ay =(v,ug)y = %(—4) 1+13-(-1)) _7127
And indeed

O, o9 Ly 1T 1 (1Y) 1917\ 1 (-8) (-4
2T R T R e T Ve val\-1) 2 \ov17) T2\ ) T s

Hurray!

4

We can also turn any basis into an orthonormal basis. This is much easier to understand on an
example first, so we’ll do an example and then the general result.

Example 10.25: (Applying Gram-Schmidt normalisation)
Let v; = (i),’l)g = (%),vg = (é), which is a basis of R®. We will, step by step, turn it into an
orthonormal basis of R3.

o Start with uy = v, = G)

o Now, using the way we can determine coordinates for an orthonormal basis (Prop. 10.23),
we want to take off the component of vo which is in direction uy:

e G ()50 = (1) =3(5)

1
3
1
= 3
(We need the ﬁ there because we have not normalised u7 yet.)

-2
3

“Be amazed” interlude: This works because of the amazing fact about coordinates
for orthonormal bases. We don’t even know the whole basis u7, usz, u3 yet, we're still
constructing it. But still we can already work out the coordinate of vy in direction
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u7. This is not possible for a “commonplace” basis!!! There you’d need to know all
the basis vectors before you can work out any coordinates.

¢ For the third one, we take off the components in the directions of the two we have already
made:

1
~ (ug, ur) —  (v3,uz) — (1) 1(1) 1( 3 3 1<1)
=v3 — - =(o)==(1)==[ L |=(_2)==(=1
N Y E N - A A IS VA )7l
Now we can check that
o (ui,uz) =0
o (ur,uz) =0
o (uz,uz) =0

(Compare with the orthogonal set of R” in the example ¢ after that definition.)

Geometric explanation:

Suppose you arrange a blackboard so that v; goes straight up in the blackboard surface, and
vy goes at an angle to v1 but is also in the blackboard surface. (I.e. we put the blackboard in
the position of the surface spanned by v1,vs.)

Then the plane orthogonal to v; is the plane that is horizontal (to the floor) and 90° to the
blackboard. Imagine taking a piece of paper to stick out in front of the blackboard. So since
we want an orthogonal basis, we want all our other vectors to be in the plane of that piece of
paper.

v is somewhere in the blackboard plane, and we get uz by “projecting v, onto the piece
of paper”. Imagine shining a light from exactly above the blackboard, and the shadow the
vector v, makes on the paper is us.

vg is lurking around somewhere in space, imagine it as an arrow which is sticking out at any
old angle from the point where vy, vs start. So we first want to project it onto the piece of
paper (shine a light from above the blackboard, take the shadow of the arrow on the paper).
This corresponds to “taking —ﬁ’%?m”

Now look at the piece of paper which is sticking out of the blackboard from above. It has one

vector us drawn on it, and another vector w = vs — %fu\{ drawn on it (the projection of

the arrow onto the piece of paper). So now draw the line on the paper which is perpendicular

to uz, and project w onto that line: that corresponds to “taking —%1’6”, and gives us us.

So now we just have to normalise them all to get

.
Ul = ——7uUy = ——= y
N T RV

and we have an orthonormal basis. Notice the special thing about this basis:
Span(uy) = Span(v1), Span(u1,u2) = Span(vy, va), Span(u1, uz, us) = Span(v, va, v3).

This is nice, because we may have chosen v; to be a special direction, e.g. an eigenvector direction
or something. And we may have chose the “blackboard plane” to be special as well. So this
algorithm preserves us these directions/planes.

So here it is in general.
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Theorem 10.26: (Gram-Schmidt normalisation)

Given a basis vi,va,...,V,, an orthonormal basis ui,--- ,u, can be constructed with the
property that Span(vy,--- ,vg) = Span(uy,- - ,ux) for any k = 1,--- n, by the following
inductive steps:

o UL = U1

O Uy = Vg — <”u ”§>u~1 (take off the component of va which is in direction uy )
o Uz = Vg — <‘1|’Z’11ﬁ§>u~1 <ﬁ’i”ﬁ§>ﬂ§ (take off components in directions Uy and U3 )
o f

o Z %’2@ (take off the components in previous directions)
o For each k, uk = Uk, (normalise all the vectors)

PRrOOF. Not lectured, so won’t be in exam, but is part of your education.
We first check that uy,d; are orthogonal, for k # [. Let’s start with 1 and 2:

(@Y, Ty = (@, (v2 — <1|J“|T§>u~1>>

= {uy,v9) — @2’? uy,uy) (linear in second entry)
= {uy, vy — {va,u1) (def of norm)
=0 (symmetric)
Now suppose that for a given k < n, the vectors uy,...,us are all orthogonal to each other, i.e.

{G;, ;) =0 for all i # j < k. Then we look at up11:

i (U1, W) ~
(U, Upy1) = Vg4l — 2721%
=l

= Uy, Vg41) — Z <vk|+~1|,|2uz>< ay, Wi ) (linear in second entry)

> <Uk+17UI><~lyul>

AR (by assumption the others are 0)

= <1’Zl7 Vk+1
=0
So by induction, all the 4; are pairwise orthogonal, so their normalised version u; form an or-

thonormal set.
It is clear by contruction that Span(vy,---,vr) = Span(uy,--- ,ux) for any k =1,---  n. O

Examples 10.27: Not lectured, here to help you with understanding. You could view them as
exercises to which you can check the answer.
a) Let’s apply Gram-Schmidt to v; = (1) and vy = (_11 ), using the weighted inner product with
D=(39).

<
=
|

ur = v = (1)

~ _ <v2,u1>~_ 1 Logyv_Loa
Uz = vz — B _(71) 5(1)_5(76)
We see that (@1, uz) = £(3-1-4—2-1-6) = 0. So we just normalise:
1 1
U = (1)

T~y U1 = —=
x| V5
1.1,
Uz = —=("3)-
™~ v
b) If you apply Gram-Schmidt to the standard basis 1, x, 22 etc. of a polynomial space, then you
get the Legendre polynomials.

Ug =
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Study guide.
Concept review
¢ Othogonal set, orthonormal set of vectors; orthonormal basis.
¢ Orthogonal set of vectors is linearly independent.
o The special way of determining coordinates for an orthonormal basis.
¢ Gram-Schmidt normalisation.
Skills
Determine whether a set is orthogonal or orthonormal.
Find coordinates of a vector with respect to an orthonormal basis.
Create an orthonormal basis out of a given basis, using Gram-Schmidt.

S O 0

D. Complex inner product

We can generalise the inner product to complex numbers, but we have to be a little careful. What
we want is to still have real numbers as the “length” of vectors. So we define

Definition 10.28: The complex inner product on C” is a function (—, —): C" x C* — C
defined by

a7 e
(v, wy =v @z(’ul vy - vn) )
Wn,
n
= 017 + VaWz + ++ + VT = D, VT
g=l
The norm (or length or magnitude) of a vector in C™ is defined as

[v] = v/{v,v) € R.

IMPORTANT: the norm of a vector is indeed in R, because
(0, v) = V1TT + VaTz - - U Ty = |V1|> + - |vn]? € R,

using the modulus of complex numbers, which is a real number.

2
Example 10.29: a) If v = ( 5 ) then
—5+2i

Jv| = A/22 + (—i)i + 32 + (=5 + 2i)(=5 — 2i) = /4 + 1 + 9 + (52 + 22) = V/43.

~3i
b) If v is as above and w = <_i:2“i>, then
w,wy =2+ (=3i) + (=i) - (=4 + i) +3-(=2) + (=5 +2i) - 0
=2 (3) 4 (=) (—4—i)+3-(=2) +0

= —7+10:.

The complex inner product is not quite bilinear: because we have the complex conjugation on
one of the entries, we only get something that is “nearly” linear in the second entry. We call the
complex inner product “sesqui-linear”. “Sesqui” means “one-and-a-half” in Latin, so it is “one-
and-a-half linear”: linear on one side, and linear but with complex conjugate scalars on the other
side. You could call it “linear in the first entry, and conjugate-linear in the second entry”.
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Theorem 10.30: (Complex inner product properties)
The complex inner product (—,—): C" x C"* — C satisfies:

(i) Qu+ po, wy = Xu, w) + v, w)

and (v, \u + pw)y = M v, uy + v, w)y (sesqui-linear)
(ii) {v,w)y = {w,v) (conjugate-symmetric)
(i1i) {v,v) =0, and {v,v)y =0< v =10 (positive definite)

The first two properties together are also called hermitian.

PROOF. (i) We have
O+ po,wy = M+ p)'w = W@ + o’ @
and
o, A+ pw) = v A+ pw) = @ + @@ = Mo, u) + v, w).

(i) (w,w) =vTw = (vTw)T =wTv = wlo = (w,v).
n n
Or do it explicitely with entries: (v,w) = >} v;jw; = >, Tjw; = {w,v).
j=1 i—1
. . J J
(iii) (v,v)y = Y, v;7; = ) |v;|* using the modulus of a complex number. As before, a sum of
j=1 j=1
non-negative terms is non-negative, and 0 if and only if each summand is 0. O
IMPORTANT: The > symbol in the last point only makes sense because in that case we are dealing
with real numbers. We cannot “compare” complex numbers, meaning complex numbers cannot be
“bigger” or “smaller” than another one.

And now we can repeat all the results from the previous section, they all carry over to complex

norm and inner product. They will be listed hereafter for your convenience.

There is an important result about real matrices which needs the complex inner product for it’s
proof:

Theorem 10.31: (Real symmetric matrix has real evalues.)
Any real symmetric matriz only has real eigenvalues.

What we mean by this is that the characteristic polynomial factors into linear factors over R, not
just over C.

PROOF. View a real symmetric matrix A as a complex matrix, with (potentially complex)
eigenvalue \. Say Av = Av for v # 0 € C™. Then, using the complex inner product, we have

v Av = vT (W) = 217 but also, as A real
=vTAT = (ATv)"7 = (Av)"D as A symmetric
=17,
So alltogether we get
Wwlo = To = A =XovTT = 0.
But v # 0, so v77 # 0, so A = X and so the eigenvalue ) is real. O

In fact, we can say more:

Theorem 10.32: (Real symmetric matrix is orthogonally diagonalisable.)
For any real symmetric matrix A, there is a basis of eigenvectors for A which is also an
orthonormal basis.

PRrROOF. Not examinable, but still part of your education. Important for second year. We will
do this in steps:
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Proposition 10.33: (Evectors for different evalues of a real symmetric matrix are
orthogonal.)

If A is a real symmetric matrix with evalues A1 # Az, then eigenvectors vy, va for A1, Ao are
orthogonal.

Proor. Note that as a real symmetric matrix has real eigenvalues (Thm 10.31), it also has
real eigenvectors. So we can use the real inner product here.

We have
Ao, 09y = (o1, ve) = (Avy, v9)
= (Av)) vy = v ATwy = vl Awy as A symmetric
= (vy, Avg) = (v1, A2v2)
= >\2<Ul, U2>
So (A — A){vi,vey = 0. As (A1 — A2) # 0, we must have {(vy,vsy = 0, i.e. the vectors are
orthogonal. |

Then we need a result which splits off one vector (and its whole subspace):

Proposition 10.34: (Line and orthogonal complement)
Givenv #0€V, then V = (v) @ {v)'.

PRrOOF. Here (v) is the one-dimensional subspace spanned by v, i.e. {v) = {kv | k € R}.
And (v)* is the orthogonal complement of v: all vectors which are orthogonal to v. Le.
()t = {w | (v,w) = 0}. We proved in a workbook question that this set of all vectors orthogonal
to v is indeed a subspace of V.

To show this is a direct sum, we have to show that the intersection is zero:
Let w € (v) n (v)*. Then w = kv for some k, and also (v, w) = 0. So (v, kv) = k(v,v) = 0. But
(v,v) = |v|? #0as v # 0,50 k =0, so w = 0. So the intersection of these two spaces is only zero.
vy N o)yt = 0.
So the sum is a direct sum. To show that we get all of V', we look at dimensions:
(v)t is the kernel of the linear map (v, —): R” — R. The image is all of R (as long as v # 0, which
it is). This is because we can get any real number by using (v, kv) = k{v,v). So by rank-nullity,
we have
dim((v)*) + dim(R) = n

which gives dim{v)* = n — 1. So the dimension of the direct sum is

dim () ® (w)*) = dim(()) + dim((v)t) =1+n—-1=n
and so this direct sum is all of V. ]
Using this result, we can split off one eigenvector and use induction.

PrROOF OF THEOREM 10.32. A is a real symmetric matrix, so it has real eigenvalues. Let A
be an eigenvalue with eigenvector v. Then V = (v) @ (v)*, by Prop. 10.34.
From Prop. 10.33 we know that all other existing eigenvectors are in (v)*, so it makes sense to
split off V' in this fashion. We now look at how A works on (v)*, so that we can use induction (as
this space has one dimension less than V).
Given w € (v)*, we want to show that Aw € (v)* as well. As A is symmetric, we have A = AT,
So

(v, Aw) = v Aw = vT ATw = (Av)Tw = (Av,w) = Qw,w) = Mv,w)y = 0.

So Aw € (v)*. This means we can view A as a linear map A: (v)* — (v)', on a space of
dimension n — 1. By induction hypothesis, (v)* has an orthonormal basis of eigenvectors of A. So
if we add v (normalised to length 1), then we have an orthonormal basis of eigenvectors for A as a
basis of V. Note that v is orthogonal to all the other vectors we have in this basis, since they are
in the orthogonal complement of v.
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The induction base case is when dim(V') = 1: then we have just one eigenvector, and normalising
it gives an orthonormal basis of the one-dimensional space.
Hence every real symmetric matrix is diagonalisable, with an orthonormal basis of eigenvectors. [

Examples 10.35: Here are two examples. (We did these in the live lecture rather than on pre-
recorded videos.)
1 2 3
o Let A= 12 2 2| Thisis a real symmetric matrix, so we know it is diagonalisable
3 2 1
without having to do any calculations.
It has characteristic polynomial

Il
|
[\
~+
I
[\
|
[\

X(1)
3 2 t-1

(t—1)(t—2)(t—1)—12—12—9(t —2) —4(t — 1) — 4(t — 1)
= (> -2t +1)(t—2)— 24— 17t + 26

=13 — 4% — 12t

=t({t—6)t+2)

So the eigenvalues are 0, 6 and —2. (Notice: even if we did not know from A being
symmetric, now we definitely know that A is diagonalisable, because it has 3 distinct

evalues.)
To work out the evector for A = 6: we need to take the matrix A — 67 to RREF, i.e.

-5 2 3 1 -2 -3 1 -2 -3 1 0 -1
-4 2 |—]0 =¥ i1 1o 1 -1|— |0 1 -1
3 2 -5 0o L -5 0 0 0 00 0
1
So the eigenvector is | 1 [.
1
-1 1
The eigenvector for A\ = —2is | 0 |, and for A\=01itis | -2 |.
1 1

We see that these three eigenvectors form an orthogonal set. But they are not an
orthonormal set, as they don’t have length 1. The “orthogonal” comes automatically
here, but we have to normalise them ourselves to get the orthonormal basis of eigenvectors
mentioned in Theorem 10.32.

79 V2
3 3
o Let A = 0 2 0 |. This is also real symmetric, so we know it is diagonalisable.
_N2 g 8

3 3
The characteristic polynomial is x(t) = (t — 2)%(t — 3). So we have a repeated

eigenvalue: in the usual case, when we don’t have the additional information of it being
a symmetric matrix, we would have to work out the geometric multiplicities to decide
whether this matrix is diagonalisable. So here the result about real symmetric matrices
really gives us new information.
We can work out that the eigenvectors are:
0 V2
for A\ =2 we have |1 |and | 0 [;
0 1
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-1
for A = 3 we have | 0 |.
V2
But as for A = 2, we have a two-dimensional eigenspace, we could also have chosen:
0 V2
for A\ =2 wetake vy = | 1| and vy = 1 |
0 1
-1
for \=3 we takevs=| 0 |
V2
The first option gives an orthogonal set (which we can normalise), but the second
option is not orthogonal. While v; and vs are orthogonal and vy and v3 are orthogonal,
because they come from different eigenvalues, we see that vy and ve are not orthogonal.
Because we have a two-dimensional eigenspace, we have to choose the basis for this space
to be orthogonal; that part is not automatic.
But we can make such a choice, so we can get an orthonormal basis of eigenvectors,

as mentioned in Theorem 10.32.
Notice this is actually not unique: here is another orthogonal set of eigenvectors

(which we can normalise):

V2 V2
for A = 2 we take | /3 | and | —v/3 |;
1 1
-1
for A\=3wetakevs =1 0 |.
V2

For a two-dimensional space, we can choose different orthogonal bases.

(Study guide at end)
For your convenience, a list of results for the complex inner product:

Corollary 10.36: (“Properties of (complex) norm”)
The complex norm on C™ satisfies:

(1) |v] = 0.
(ii) |v] =0 < v =0.
(i) || = [A[]lv].
PROOF. Exercise: use complex inner product properties. ([l

It is often useful to remember

[0l = <v, v).

Definition 10.37: A unit vector is a vector of norm 1. Given v € C”, if v # 0, we can
normalise v to the unit vector mv.

Examples 10.38: a) The standard basis vectors of C™ are all unit vectors.
2

2
b) If v ( 3 ) as above, then its normalisation is u = prv m( 3 >
—5+2i —5+2i
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1
1
c) Ifv= < . ) € C™, then its normalisation is still \%v.
. n
i,
i
3
d) Ifw= | . |€C", then w = iv for the v in the previous example, and so |w| = |i[[v] = |lv], so

i
the normalisation is —=w.
vn

Definition 10.39: Two vectors v,w € C™ are called orthogonal exactly when (v, w) = 0.

Examples 10.40: a) The standard basis vectors are pairwise orthogonal.
b) v1 = (}) and v2 = (}) are orthogonal in C?:

<’l)1,1)2>= 1-i4+i-1=—i4+i=0.
As in R, we can use the inner product to determine vectors:

Proposition 10.41: (Inner product detects 0)
For given v e C™, {v,w) = 0 for all w e C™ if and only if v = 0.

PROOF. Same as for R. O

We still have Cauchy-Schwarz:

Theorem 10.42: (Cauchy-Schwarz inequality)
For u,v e C", we have
[Cu, 0] < Juf o]

(= Ku,v)| < |ullv])
PROOF. Same proof as for R, because all the quantities above are real numbers. Notice we

can’t go to (u,v) < ||uf|||v] without modulus, because that is (potentially) a complex number and
can’t be compared. (Il

And again we get:

Corollary 10.43: (Triangle inequality for norm)
Given v,w € R™, then |v + w| < |Jv|| + ||w|-

PRrROOF. Same as for R. O
We also still have orthogonal and orthonormal bases, and Gram-Schmidt normalisation.

Study guide.
Concept review

¢ Complex inner product and norm, and relationship between the two.

o Complex inner product properties: it’s sesqui-linear, conjugate-symmetric, positive def-
inite.

¢ Real symmetric matrix has real eigenvalues.

Real symmetric matrix has orthonormal basis of eigenvectors (without proof).

o Properties of inner product and norm from before, now for complex inner product.

Skills

<

Work out norm of a complex vector.

Work out inner product of two complex vectors.

Use properties of complex inner product for expansion/manipulation.
Normalise a complex vector to be a unit vector.

Determine whether complex vectors are orthogonal.

[ R R R
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E. Study guide collation

Just putting together all the study guides from the different sections.

Concept review.

<

Standard (Euclidean) Inner Product, norm, and the connection between the two.
Inner product properties: it’s bilinear, symmetric, positive definite.

Norm properties that we expect from a “length”.

Unit vectors, normalisation of vectors.

Orthogonal vectors. Hyperplane orthogonal to a vector.

Inner product detects 0.

Cauchy-Schwarz inequality.

Triangle inequality of norm.

General inner product.

Examples of weighted inner product, matrix inner product, integral inner product.
Othogonal set, orthonormal set of vectors; orthonormal basis.

Orthogonal set of vectors is linearly independent.

The special way of determining coordinates for an orthonormal basis.
Gram-Schmidt normalisation.

Complex inner product and norm, and relationship between the two.

Complex inner product properties: it’s sesqui-linear, conjugate-symmetric, positive def-
inite.

¢ Real symmetric matrix has real eigenvalues.

o Real symmetric matrix has orthonormal basis of eigenvectors (without proof).

o Properties of inner product and norm from before, now for complex inner product.

Skills.

Work out norm of a given vector.

Work out inner product of two given vectors.

Use properties of inner product for expansion/manipulation.

Normalise a vector to be a unit vector.

Determine whether vectors are orthogonal.

Work out norm of a given vector for different examples of (non-Euclidean) inner products.
Work out inner product of two given vectors for different examples of inner products.
Normalise a vector to be a unit vector with respect to different examples of inner products.
Determine whether vectors are orthogonal with respect to different examples of inner
products.

Determine whether a set is orthogonal or orthonormal.

Find coordinates of a vector with respect to an orthonormal basis.

Create an orthonormal basis out of a given basis, using Gram-Schmidt.

Work out norm of a complex vector.

Work out inner product of two complex vectors.

Use properties of complex inner product for expansion/manipulation.

Normalise a complex vector to be a unit vector.

Determine whether complex vectors are orthogonal.
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