Groups Example Sheet 4

Michaelmas 2015

Julia Goedecke

Please send comments and corrections to jg352.

1. Let G be the set of all 3×3 matrices of the form

$$\begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}$$

with $x, y, z \in \mathbb{R}$. Show that G is a subgroup of the group of invertible real matrices under multiplication. Let H be the subset of G given by those matrices with x = z = 0. Show that H is a normal subgroup of G and identify G/H. (This G is called the *Heisenberg group*.)

- 2. Take the Heisenberg group as above, but this time with entries in \mathbb{Z}_3 . Show that every nonidentity element of this group has order 3, but the group is not isomorphic to $C_3 \times C_3 \times C_3$.
- 3. Recall that the *centre* of a group G consists of all those elements of G that commute with all the elements of G. Show that the centre Z of the general linear group $GL_2(\mathbb{C})$ consists of all non-zero scalar matrices. Identify the centre of the special linear group $SL_2(\mathbb{C})$.
- 4. Consider the set of matrices of the form $\begin{pmatrix} 0 & 0 \\ 0 & t \end{pmatrix}$ for $t \in \mathbb{R}^* = \mathbb{R} \setminus \{0\}$. Show that these form a group under matrix multiplication. More generally, show that if a set of matrices forms a group under multiplication, then either all matrices in the set have non-zero determinant, or all have zero determinant.
- 5. Let G be the set of all 3×3 real matrices of determinant 1 of the form

$$\begin{pmatrix} a & 0 & 0 \\ b & x & y \\ c & z & w \end{pmatrix}.$$

Verify that G is a group. Find a homomorphism from G onto the group $GL_2(\mathbb{R})$ of all non-singular 2×2 real matrices, and find its kernel.

6. Let K be a normal subgroup of order 2 in the group G. Show that K lies in the centre of G; that is, show kg = gk for all $k \in K$ and $g \in G$.

Exhibit a surjective homomorphism of the orthogonal group O(3) onto C_2 and another onto the special orthogonal group SO(3).

- 7. Consider the Möbius maps $f(z) = e^{2\pi i/n}z$ and g(z) = 1/z. Show that the subgroup $G = \langle f, g \rangle$ of the Möbius group \mathcal{M} is a dihedral group of order 2n.
- 8. Let g(z) = (z+1)/(z-1). By considering the points g(0), $g(\infty)$, g(1) and g(i), find the image of the real axis \mathbb{R} and of the imaginary axis \mathbb{I} under g. What is $g(\Sigma)$, where Σ is the first quadrant in \mathbb{C} ?
- 9. What is the order of the Möbius map f(z) = iz? If h is any Möbius map, find the order of hfh^{-1} and its fixed points. Use this to construct a Möbius map of order four that fixes 1 and -1.
- 10. Let G be the group of Möbius transformations which map the set $\{0, 1, \infty\}$ onto itself. Find all the elements in G. To which standard group is G isomorphic? Justify your answer.

Find the group of Möbius transformations which map the set $\{0, 2, \infty\}$ onto itself. [Try to do as little calculation as possible.]

- 11. Let G be as in the previous question. Show that, given $\sigma \in S_4$, there exists $f_{\sigma} \in G$ for which, whenever z_1, z_2, z_3 and z_4 are four distinct points in \mathbb{C}_{∞} , we have $f_{\sigma}([z_1, z_2, z_3, z_4]) = [z_{\sigma(1)}, z_{\sigma(2)}, z_{\sigma(3)}, z_{\sigma(4)}]$. [You may want to start with σ a transposition in S_4 .] Show that the map $\sigma \longmapsto f_{\sigma^{-1}}$ from S_4 to G gives a homomorphism from S_4 onto S_3 . Find its kernel.
- 12. Let G be the general linear group $\operatorname{GL}_2(5)$ of invertible 2×2 matrices over the field \mathbb{F}_5 of integers modulo 5, so that the arithmetic in G is modulo 5. Let H be the subgroup $\operatorname{SL}_2(5)$ of G consisting of matrices of determinant 1. Show that G has order 480. By considering a suitable homomorphism from G to another group, deduce that H has order 120.

Prove that -I is the only element of H of order 2, and deduce that H has no subgroup isomorphic to A_5 .

Find a subgroup of H isomorphic to Q_8 , and an element of order 3 normalising it in H. Deduce that H has a subgroup of index 5, and obtain a homomorphism from H to S_5 .

* Deduce that $SL_2(5)/\{\pm I\}$ is isomorphic to the alternating group A_5 .