000	00000000000	000

Categories of spaces built from local models

Zhen Lin Low

Department of Pure Mathematics and Mathematical Statistics University of Cambridge

100th Peripatetic Seminar on Sheaves and Logic Cambridge, England

Zhen Lin Low

Categories of spaces built from local models

000	00000000000	000

Introduction

Overview

Details

Nice coverages Local homeomorphisms Admissible ecumenae Tractable equivalence relations Universality

Digression

Gros pretoposes

Introduction		
•00	00000000000	000

Categories of spaces built from local models

æ

▲口→ ▲御→ ▲注→ ▲注→

Introduction	
000	
Overview	

There are a number of manifold-like notions in geometry,

Categories of spaces built from local models

< Ξ

< < >> < <</>

Introduction	
•00	
Overview	

There are a number of manifold-like notions in geometry, i.e. spaces obtained by gluing together nice spaces (local models).

Introduction	
000	
Overview	

- There are a number of manifold-like notions in geometry, i.e. spaces obtained by gluing together nice spaces (local models).
- ► For example:

Introduction	
•00	
Overview	

- There are a number of manifold-like notions in geometry, i.e. spaces obtained by gluing together nice spaces (local models).
- For example: smooth manifolds,

Introduction	Digression
Overview	

- There are a number of manifold-like notions in geometry, i.e. spaces obtained by gluing together nice spaces (local models).
- > For example: smooth manifolds, topological manifolds,

Introduction	
•00	
Overview	

- There are a number of manifold-like notions in geometry, i.e. spaces obtained by gluing together nice spaces (local models).
- For example: smooth manifolds, topological manifolds, complex analytic manifolds,

Introduction	
•00	
Overview	

- There are a number of manifold-like notions in geometry, i.e. spaces obtained by gluing together nice spaces (local models).
- For example: smooth manifolds, topological manifolds, complex analytic manifolds, manifolds with boundaries,

Introduction	
•00	
Overview	

- There are a number of manifold-like notions in geometry, i.e. spaces obtained by gluing together nice spaces (local models).
 - For example: smooth manifolds, topological manifolds, complex analytic manifolds, manifolds with boundaries, manifolds with corners,

Introduction	
•00	
Overview	

- There are a number of manifold-like notions in geometry, i.e. spaces obtained by gluing together nice spaces (local models).
- For example: smooth manifolds, topological manifolds, complex analytic manifolds, manifolds with boundaries, manifolds with corners, ...

Introduction	
•00	
Oversieve	

- There are a number of manifold-like notions in geometry, i.e. spaces obtained by gluing together nice spaces (local models).
- For example: smooth manifolds, topological manifolds, complex analytic manifolds, manifolds with boundaries, manifolds with corners, ...
- Also: schemes.

Introduction	
000	

- There are a number of manifold-like notions in geometry, i.e. spaces obtained by gluing together nice spaces (local models).
- For example: smooth manifolds, topological manifolds, complex analytic manifolds, manifolds with boundaries, manifolds with corners, ...
- Also: schemes.
- The above admit (alternative) definitions as special sheaves on appropriate sites

Introduction	
•00	

- There are a number of manifold-like notions in geometry, i.e. spaces obtained by gluing together nice spaces (local models).
- For example: smooth manifolds, topological manifolds, complex analytic manifolds, manifolds with boundaries, manifolds with corners, ...
- Also: schemes.
- The above admit (alternative) definitions as special sheaves on appropriate sites – this is the so-called 'functor-of-points approach'.

Introduction	
000	

- There are a number of manifold-like notions in geometry, i.e. spaces obtained by gluing together nice spaces (local models).
- For example: smooth manifolds, topological manifolds, complex analytic manifolds, manifolds with boundaries, manifolds with corners, ...
- Also: schemes.
- The above admit (alternative) definitions as special sheaves on appropriate sites – this is the so-called 'functor-of-points approach'.
- What are the properties of these categories of spaces built from local models?

Introduction		
000	00000000000	000

Categories of spaces built from local models

æ

▲口→ ▲御→ ▲注→ ▲注→

Introduction	
000	

These categories are extensive categories,

-

Introduction	
000	
Overview	

These categories are extensive categories, i.e. have coproducts that are disjoint and pullback-stable.

Introduction	
000	
Overview	

- These categories are extensive categories, i.e. have coproducts that are disjoint and pullback-stable.
- There is a class of distinguished morphisms

Introduction	
000	
Overview	

- These categories are extensive categories, i.e. have coproducts that are disjoint and pullback-stable.
- There is a class of distinguished morphisms local diffeomorphisms in the case of smooth manifolds,

Introduction	
000	
o :	

- These categories are extensive categories, i.e. have coproducts that are disjoint and pullback-stable.
- There is a class of distinguished morphisms local diffeomorphisms in the case of smooth manifolds, local isomorphisms in the case of schemes –

Introduction	
000	
o ·	

- These categories are extensive categories, i.e. have coproducts that are disjoint and pullback-stable.
- There is a class of distinguished morphisms local diffeomorphisms in the case of smooth manifolds, local isomorphisms in the case of schemes – that is quadrable,

Introduction	
000	

- These categories are extensive categories, i.e. have coproducts that are disjoint and pullback-stable.
- There is a class of distinguished morphisms local diffeomorphisms in the case of smooth manifolds, local isomorphisms in the case of schemes – that is quadrable, i.e. pullbacks of distinguished morphisms exist

Introduction	
000	
• • •	

- These categories are extensive categories, i.e. have coproducts that are disjoint and pullback-stable.
- There is a class of distinguished morphisms local diffeomorphisms in the case of smooth manifolds, local isomorphisms in the case of schemes – that is quadrable, i.e. pullbacks of distinguished morphisms exist and are distinguished.

Introduction	
000	

- These categories are extensive categories, i.e. have coproducts that are disjoint and pullback-stable.
- There is a class of distinguished morphisms local diffeomorphisms in the case of smooth manifolds, local isomorphisms in the case of schemes – that is quadrable, i.e. pullbacks of distinguished morphisms exist and are distinguished.
- There is a subcanonical superextensive coverage

Introduction	
000	

- These categories are extensive categories, i.e. have coproducts that are disjoint and pullback-stable.
- There is a class of distinguished morphisms local diffeomorphisms in the case of smooth manifolds, local isomorphisms in the case of schemes – that is quadrable, i.e. pullbacks of distinguished morphisms exist and are distinguished.
- There is a subcanonical superextensive coverage in which the covering sieves are generated by distinguished morphisms,

Introduction	
000	

- These categories are extensive categories, i.e. have coproducts that are disjoint and pullback-stable.
- There is a class of distinguished morphisms local diffeomorphisms in the case of smooth manifolds, local isomorphisms in the case of schemes – that is quadrable, i.e. pullbacks of distinguished morphisms exist and are distinguished.
- There is a subcanonical superextensive coverage in which the covering sieves are generated by distinguished morphisms, and moreover the class of distinguished morphisms satisfies various descent conditions with respect to this coverage.

Introduction	
000	

- These categories are extensive categories, i.e. have coproducts that are disjoint and pullback-stable.
- There is a class of distinguished morphisms local diffeomorphisms in the case of smooth manifolds, local isomorphisms in the case of schemes – that is quadrable, i.e. pullbacks of distinguished morphisms exist and are distinguished.
- There is a subcanonical superextensive coverage in which the covering sieves are generated by distinguished morphisms, and moreover the class of distinguished morphisms satisfies various descent conditions with respect to this coverage.
- An admissible ecumene consists of data as above,

Introduction	
000	

- These categories are extensive categories, i.e. have coproducts that are disjoint and pullback-stable.
- There is a class of distinguished morphisms local diffeomorphisms in the case of smooth manifolds, local isomorphisms in the case of schemes – that is quadrable, i.e. pullbacks of distinguished morphisms exist and are distinguished.
- There is a subcanonical superextensive coverage in which the covering sieves are generated by distinguished morphisms, and moreover the class of distinguished morphisms satisfies various descent conditions with respect to this coverage.
- An admissible ecumene consists of data as above, satisfying some further technical conditions.

Introduction		
000	00000000000	000

Categories of spaces built from local models

æ

▲口→ ▲御→ ▲注→ ▲注→

Introduction		
000	00000000000	000
Overview		

 Kernel pairs of distinguished morphisms have certain special properties.

Introduction	
000	
Overview	

Kernel pairs of distinguished morphisms have certain special properties. Call such equivalence relations tractable.

Introduction	
000	
Overview	

- Kernel pairs of distinguished morphisms have certain special properties. Call such equivalence relations tractable.
- Say an admissible ecumene is effective

Introduction	
000	
Overview	

- Kernel pairs of distinguished morphisms have certain special properties. Call such equivalence relations tractable.
- Say an admissible ecumene is effective if every tractable equivalence relation has an effective quotient

Introduction	
000	
Overview	

- Kernel pairs of distinguished morphisms have certain special properties. Call such equivalence relations tractable.
- Say an admissible ecumene is effective if every tractable equivalence relation has an effective quotient that is distinguished
| Introduction | |
|--------------|--|
| 000 | |
| | |
| 0 | |

- Kernel pairs of distinguished morphisms have certain special properties. Call such equivalence relations tractable.
- Say an admissible ecumene is effective if every tractable equivalence relation has an effective quotient that is distinguished and covering.

Introduction	
000	
· · ·	

- Kernel pairs of distinguished morphisms have certain special properties. Call such equivalence relations tractable.
- Say an admissible ecumene is effective if every tractable equivalence relation has an effective quotient that is distinguished and covering.
- Categories of local models are (often) admissible ecumenae.

Introduction	
000	

- Kernel pairs of distinguished morphisms have certain special properties. Call such equivalence relations tractable.
- Say an admissible ecumene is effective if every tractable equivalence relation has an effective quotient that is distinguished and covering.
- Categories of local models are (often) admissible ecumenae.
- Categories of spaces built from local models are effective admissible ecumenae.

Introduction	
000	

- Kernel pairs of distinguished morphisms have certain special properties. Call such equivalence relations tractable.
- Say an admissible ecumene is effective if every tractable equivalence relation has an effective quotient that is distinguished and covering.
- Categories of local models are (often) admissible ecumenae.
- Categories of spaces built from local models are effective admissible ecumenae.
- In examples of interest, the category of spaces built from local models is the universal effective admissible ecumene into which the category of local models embeds.

	Details	
000	● 00 000000000	000

Categories of spaces built from local models

< ≣⇒

	Details	
000	00000000000	000

Throughout this talk:

< E

Details	
••••••	

Throughout this talk:

 \blacktriangleright κ is a regular cardinal.

Э

Details	
••••••	

Throughout this talk:

- \blacktriangleright κ is a regular cardinal.
- C is a κ -ary extensive category.

Details	
• 00 00000000	

Throughout this talk:

- κ is a regular cardinal.
- *C* is a κ -ary extensive category.

Details	
• 00 00000000	

Throughout this talk:

- κ is a regular cardinal.
- *C* is a κ -ary extensive category.

A **nice coverage** on *C* is a class E of morphisms in *C* with the following properties:

• Every isomorphism in *C* is a member of E.

Details	
• 00 00000000	

Throughout this talk:

- κ is a regular cardinal.
- *C* is a κ -ary extensive category.

- Every isomorphism in *C* is a member of E.
- E is closed under composition.

Details	
• 00 00000000	

Throughout this talk:

- κ is a regular cardinal.
- *C* is a κ -ary extensive category.

- Every isomorphism in *C* is a member of E.
- E is closed under composition.
- **E** is closed under κ -ary coproduct.

Details	
• 00 00000000	

Throughout this talk:

- κ is a regular cardinal.
- *C* is a κ -ary extensive category.

- Every isomorphism in *C* is a member of E.
- E is closed under composition.
- **E** is closed under κ -ary coproduct.
- E is a quadrable class of morphisms in C.

Throughout this talk:

- κ is a regular cardinal.
- C is a κ -ary extensive category.

- Every isomorphism in C is a member of E.
- E is closed under composition.
- **E** is closed under κ -ary coproduct.
- E is a quadrable class of morphisms in C.
- Every member of E is an effective epimorphism in C.

Throughout this talk:

- κ is a regular cardinal.
- C is a κ -ary extensive category.

- Every isomorphism in C is a member of E.
- E is closed under composition.
- **E** is closed under κ -ary coproduct.
- E is a quadrable class of morphisms in *C*.
- Every member of E is an effective epimorphism in C.
- Every finite diagram in C has an E-weak limit.

	Details	
000	00000000000	000

Categories of spaces built from local models

< ≣⇒

	Details	
000	00000000000	000

For the remainder of this talk:

-

Details	
00000000000	

For the remainder of this talk:

▶ E is a nice coverage on *C*.

Details	Digression
00000000000	

For the remainder of this talk:

▶ E is a nice coverage on *C*.

The covering sieves on an object X in C with respect to the Grothendieck topology associated with E are the sieves

Details	
0000000000	

For the remainder of this talk:

E is a nice coverage on C.

The covering sieves on an object X in C with respect to the Grothendieck topology associated with E are the sieves that contain a κ -small family $\{(U_i, x_i) | i \in I\}$

Details	
0000000000	

For the remainder of this talk:

▶ E is a nice coverage on *C*.

The covering sieves on an object X in C with respect to the Grothendieck topology associated with E are the sieves that contain a κ -small family $\{(U_i, x_i) | i \in I\}$ such that the induced morphism $x : \prod_{i \in I} U_i \to X$ is a member of E.

Details	
0000000000	

For the remainder of this talk:

▶ E is a nice coverage on *C*.

The covering sieves on an object X in C with respect to the Grothendieck topology associated with E are the sieves that contain a κ -small family $\{(U_i, x_i) | i \in I\}$ such that the induced morphism $x : \prod_{i \in I} U_i \to X$ is a member of E.

Remark. By construction, this Grothendieck topology is subcanonical

Details	Digression
0000000000	

For the remainder of this talk:

E is a nice coverage on C.

The covering sieves on an object X in C with respect to the Grothendieck topology associated with E are the sieves that contain a κ -small family $\{(U_i, x_i) | i \in I\}$ such that the induced morphism $x : \prod_{i \in I} U_i \to X$ is a member of E.

Remark. By construction, this Grothendieck topology is subcanonical and κ -ary superextensive.

Details	Digression
0000000000	

For the remainder of this talk:

E is a nice coverage on C.

The covering sieves on an object X in C with respect to the Grothendieck topology associated with E are the sieves that contain a κ -small family $\{(U_i, x_i) | i \in I\}$ such that the induced morphism $x : \prod_{i \in I} U_i \to X$ is a member of E.

Remark. By construction, this Grothendieck topology is subcanonical and κ -ary superextensive.

The condition on E-weak limits says,

Details	Digression
0000000000	

For the remainder of this talk:

E is a nice coverage on C.

The covering sieves on an object X in C with respect to the Grothendieck topology associated with E are the sieves that contain a κ -small family $\{(U_i, x_i) | i \in I\}$ such that the induced morphism $x : \prod_{i \in I} U_i \to X$ is a member of E.

Remark. By construction, this Grothendieck topology is subcanonical and κ -ary superextensive.

The condition on E-weak limits says, for every finite diagram $X : \mathcal{J} \rightarrow \mathcal{C}$,

Details	
0000000000	

For the remainder of this talk:

E is a nice coverage on C.

The covering sieves on an object X in C with respect to the Grothendieck topology associated with E are the sieves that contain a κ -small family $\{(U_i, x_i) | i \in I\}$ such that the induced morphism $x : \prod_{i \in I} U_i \to X$ is a member of E.

Remark. By construction, this Grothendieck topology is subcanonical and κ -ary superextensive.

The condition on E-weak limits says, for every finite diagram $X : \mathcal{J} \to \mathcal{C}$, there exist an object \tilde{X} in \mathcal{C}

Details	Digression
0000000000	

For the remainder of this talk:

▶ E is a nice coverage on *C*.

The covering sieves on an object X in C with respect to the Grothendieck topology associated with E are the sieves that contain a κ -small family $\{(U_i, x_i) | i \in I\}$ such that the induced morphism $x : \prod_{i \in I} U_i \to X$ is a member of E.

Remark. By construction, this Grothendieck topology is subcanonical and κ -ary superextensive.

The condition on E-weak limits says, for every finite diagram $X : \mathcal{J} \to \mathcal{C}$, there exist an object \tilde{X} in \mathcal{C} and a morphism $h_{\tilde{X}} \to \lim_{\mathcal{T}} h_X$

Details	Digression
0000000000	

For the remainder of this talk:

E is a nice coverage on C.

The covering sieves on an object X in C with respect to the Grothendieck topology associated with E are the sieves that contain a κ -small family $\{(U_i, x_i) | i \in I\}$ such that the induced morphism $x : \prod_{i \in I} U_i \to X$ is a member of E.

Remark. By construction, this Grothendieck topology is subcanonical and κ -ary superextensive.

The condition on E-weak limits says, for every finite diagram $X : \mathcal{J} \to \mathcal{C}$, there exist an object \tilde{X} in \mathcal{C} and a morphism $h_{\tilde{X}} \to \underset{\mathcal{J}}{\lim} h_X$ that is a sheaf epimorphism with respect to this Grothendieck topology.

	Details	
000	00000000000	000

Categories of spaces built from local models

Э

	Details	
000	00000000000	000

An E-sheaf A on C is E-locally 1-presentable if

	Details	
000	00000000000	000

An E-sheaf A on C is E-locally 1-presentable if there exist a parallel pair $d_0, d_1 : R \to X$ of morphisms in C

	Details	
000	00000000000	000

An E-sheaf A on C is E-locally 1-presentable if there exist a parallel pair $d_0, d_1 : R \to X$ of morphisms in C and an element $a \in A(X)$

	Details	
000	00000000000	000

An E-sheaf A on C is E-locally 1-presentable if there exist a parallel pair $d_0, d_1 : R \to X$ of morphisms in C and an element $a \in A(X)$ such that:

	Details	
000	00000000000	000

Categories of spaces built from local models

An E-sheaf A on C is E-locally 1-presentable if there exist a parallel pair $d_0, d_1 : R \to X$ of morphisms in C and an element $a \in A(X)$ such that: • $a \cdot d_0 = a \cdot d_1$.

Zhen Lin Low

	Details	
000	0000000000	000

An E-sheaf A on C is E-locally 1-presentable if there exist a parallel pair $d_0, d_1 : R \to X$ of morphisms in C and an element $a \in A(X)$ such that:

$$\blacktriangleright a \cdot d_0 = a \cdot d_1.$$

▶ The morphism $a \cdot (-) : h_X \rightarrow A$ is an E-sheaf epimorphism.

	Details	
000	00000000000	000

An E-sheaf A on C is E-locally 1-presentable if there exist a parallel pair $d_0, d_1 : R \to X$ of morphisms in C and an element $a \in A(X)$ such that:

- $\blacktriangleright a \cdot d_0 = a \cdot d_1.$
- ▶ The morphism $a \cdot (-) : h_X \rightarrow A$ is an E-sheaf epimorphism.
- ► The induced morphism $h_R \rightarrow h_X \times_A h_X$ is an E-sheaf epimorphism.
An E-sheaf A on C is E-locally 1-presentable if there exist a parallel pair $d_0, d_1 : R \to X$ of morphisms in C and an element $a \in A(X)$ such that:

- $\blacktriangleright a \cdot d_0 = a \cdot d_1.$
- ▶ The morphism $a \cdot (-) : h_X \rightarrow A$ is an E-sheaf epimorphism.
- ► The induced morphism $h_R \rightarrow h_X \times_A h_X$ is an E-sheaf epimorphism.

The exact completion Ex(C, E) is (equivalent to) the full subcategory of E-locally 1-presentable E-sheaves on C.

An E-sheaf A on C is E-locally 1-presentable if there exist a parallel pair $d_0, d_1 : R \to X$ of morphisms in C and an element $a \in A(X)$ such that:

- $\blacktriangleright a \cdot d_0 = a \cdot d_1.$
- ▶ The morphism $a \cdot (-) : h_X \rightarrow A$ is an E-sheaf epimorphism.
- ► The induced morphism $h_R \rightarrow h_X \times_A h_X$ is an E-sheaf epimorphism.

The **exact completion** Ex(C, E) is (equivalent to) the full subcategory of E-locally 1-presentable E-sheaves on C.

Remark. Since *C* is κ -ary extensive

An E-sheaf A on C is E-locally 1-presentable if there exist a parallel pair $d_0, d_1 : R \to X$ of morphisms in C and an element $a \in A(X)$ such that:

- $\blacktriangleright a \cdot d_0 = a \cdot d_1.$
- ▶ The morphism $a \cdot (-) : h_X \rightarrow A$ is an E-sheaf epimorphism.
- ► The induced morphism $h_R \rightarrow h_X \times_A h_X$ is an E-sheaf epimorphism.

The exact completion Ex(C, E) is (equivalent to) the full subcategory of E-locally 1-presentable E-sheaves on C.

Remark. Since C is κ -ary extensive and E is closed under κ -ary coproduct,

An E-sheaf A on C is E-locally 1-presentable if there exist a parallel pair $d_0, d_1 : R \to X$ of morphisms in C and an element $a \in A(X)$ such that:

- $\blacktriangleright a \cdot d_0 = a \cdot d_1.$
- ▶ The morphism $a \cdot (-) : h_X \rightarrow A$ is an E-sheaf epimorphism.
- ► The induced morphism $h_R \rightarrow h_X \times_A h_X$ is an E-sheaf epimorphism.

The exact completion Ex(C, E) is (equivalent to) the full subcategory of E-locally 1-presentable E-sheaves on C.

Remark. Since C is κ -ary extensive and E is closed under κ -ary coproduct, Ex(C, E) is a κ -ary pretopos.

An E-sheaf A on C is E-locally 1-presentable if there exist a parallel pair $d_0, d_1 : R \to X$ of morphisms in C and an element $a \in A(X)$ such that:

- $\blacktriangleright a \cdot d_0 = a \cdot d_1.$
- ▶ The morphism $a \cdot (-) : h_X \rightarrow A$ is an E-sheaf epimorphism.
- ► The induced morphism $h_R \rightarrow h_X \times_A h_X$ is an E-sheaf epimorphism.

The exact completion Ex(C, E) is (equivalent to) the full subcategory of E-locally 1-presentable E-sheaves on C.

Remark. Since C is κ -ary extensive and E is closed under κ -ary coproduct, Ex(C, E) is a κ -ary pretopos.

Remark. In the special case where E is the class of isomorphisms in C,

An E-sheaf A on C is E-locally 1-presentable if there exist a parallel pair $d_0, d_1 : R \to X$ of morphisms in C and an element $a \in A(X)$ such that:

- $\blacktriangleright a \cdot d_0 = a \cdot d_1.$
- ▶ The morphism $a \cdot (-) : h_X \rightarrow A$ is an E-sheaf epimorphism.
- ► The induced morphism $h_R \rightarrow h_X \times_A h_X$ is an E-sheaf epimorphism.

The exact completion Ex(C, E) is (equivalent to) the full subcategory of E-locally 1-presentable E-sheaves on C.

Remark. Since C is κ -ary extensive and E is closed under κ -ary coproduct, Ex(C, E) is a κ -ary pretopos.

Remark. In the special case where E is the class of isomorphisms in C, Ex(C, E) is the well-known ex/lex completion of C.

イロト イタト イヨト イヨト

Details	
0000000000	

Categories of spaces built from local models

Zhen Lin Low

-

A class of local homeomorphisms is a class \mathcal{D} of morphisms in \mathcal{C} with the following properties:

イロト イロト イヨト イヨト

A class of local homeomorphisms is a class \mathcal{D} of morphisms in \mathcal{C} with the following properties:

• Every isomorphism in *C* is a member of *D*.

-∢ ≣ ▶

< ロ > < 同 > < 三 >

A class of local homeomorphisms is a class \mathcal{D} of morphisms in \mathcal{C} with the following properties:

- Every isomorphism in *C* is a member of *D*.
- ▶ *D* is closed under composition.

< ∃ >

< D > < </p>

- Every isomorphism in *C* is a member of *D*.
- ▶ *D* is closed under composition.
- \mathcal{D} is a quadrable class of morphisms in \mathcal{C} .

- Every isomorphism in *C* is a member of *D*.
- \mathcal{D} is closed under composition.
- ▶ *D* is a quadrable class of morphisms in *C*.
- ▶ For every object *X* in *C*

- Every isomorphism in *C* is a member of *D*.
- \mathcal{D} is closed under composition.
- ▶ *D* is a quadrable class of morphisms in *C*.
- For every object X in C and every κ -small set I,

- Every isomorphism in *C* is a member of *D*.
- \mathcal{D} is closed under composition.
- D is a quadrable class of morphisms in C.
- For every object X in C and every κ -small set I, the codiagonal morphism $\nabla : \prod_{i \in I} X \to X$ is a member of \mathcal{D} .

- Every isomorphism in *C* is a member of *D*.
- \mathcal{D} is closed under composition.
- D is a quadrable class of morphisms in C.
- For every object X in C and every κ -small set I, the codiagonal morphism $\nabla : \prod_{i \in I} X \to X$ is a member of \mathcal{D} .
- D is closed under κ -ary coproduct.

A class of local homeomorphisms is a class \mathcal{D} of morphisms in \mathcal{C} with the following properties:

- Every isomorphism in *C* is a member of *D*.
- \mathcal{D} is closed under composition.
- D is a quadrable class of morphisms in C.
- ► For every object X in C and every κ -small set I, the codiagonal morphism $\nabla : \coprod_{i \in I} X \to X$ is a member of D.
- D is closed under κ -ary coproduct.

÷

	Details	
000	0000000000	000

Categories of spaces built from local models

-

Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C,

イロト イロト イヨト イヨト

÷

• Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$

÷

• Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$ and $g \circ f : X \to Z$ are members of D,

イロト イロト イヨト イヨト

÷

• Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$ and $g \circ f : X \to Z$ are members of D, then $f : X \to Y$ is also a member of D.

イロト イロト イヨト イヨト

÷

- Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$ and $g \circ f : X \to Z$ are members of D, then $f : X \to Y$ is also a member of D.
- Given a member $f : X \rightarrow Y$ of E

-∢≣⇒

< ロ > < 同 > < 三 >

÷

- Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$ and $g \circ f : X \to Z$ are members of D, then $f : X \to Y$ is also a member of D.
- Given a member $f : X \twoheadrightarrow Y$ of E and a morphism $g : Y \to Z$ in C,

÷

- Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$ and $g \circ f : X \to Z$ are members of D, then $f : X \to Y$ is also a member of D.
- Given a member $f : X \twoheadrightarrow Y$ of E and a morphism $g : Y \to Z$ in C, if both $f : X \twoheadrightarrow Y$

< ロ > < 同 > < 回 >

÷

- Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$ and $g \circ f : X \to Z$ are members of D, then $f : X \to Y$ is also a member of D.
- ► Given a member $f : X \twoheadrightarrow Y$ of E and a morphism $g : Y \to Z$ in C, if both $f : X \twoheadrightarrow Y$ and $g \circ f : X \to Z$ are members of D,

÷

- Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$ and $g \circ f : X \to Z$ are members of D, then $f : X \to Y$ is also a member of D.
- ▶ Given a member $f : X \twoheadrightarrow Y$ of E and a morphism $g : Y \to Z$ in C, if both $f : X \twoheadrightarrow Y$ and $g \circ f : X \to Z$ are members of D, then $g : Y \to Z$ is also a member of D.

イロト イタト イヨト イヨト

÷

- Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$ and $g \circ f : X \to Z$ are members of D, then $f : X \to Y$ is also a member of D.
- Given a member $f : X \twoheadrightarrow Y$ of E and a morphism $g : Y \to Z$ in C, if both $f : X \twoheadrightarrow Y$ and $g \circ f : X \to Z$ are members of \mathcal{D} , then $g : Y \to Z$ is also a member of \mathcal{D} .

• If
$$f: X \to Y$$
 is a member of \mathcal{D} ,

イロト イタト イヨト イヨト

÷

- Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$ and $g \circ f : X \to Z$ are members of D, then $f : X \to Y$ is also a member of D.
- Given a member $f : X \twoheadrightarrow Y$ of E and a morphism $g : Y \to Z$ in C, if both $f : X \twoheadrightarrow Y$ and $g \circ f : X \to Z$ are members of \mathcal{D} , then $g : Y \to Z$ is also a member of \mathcal{D} .
- If f : X → Y is a member of D, then there is a κ-small set Φ of objects in C_{/X} with the following properties:

÷

- Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$ and $g \circ f : X \to Z$ are members of D, then $f : X \to Y$ is also a member of D.
- ▶ Given a member $f : X \twoheadrightarrow Y$ of E and a morphism $g : Y \to Z$ in C, if both $f : X \twoheadrightarrow Y$ and $g \circ f : X \to Z$ are members of D, then $g : Y \to Z$ is also a member of D.
- If f : X → Y is a member of D, then there is a κ-small set Φ of objects in C_{/X} with the following properties:
 - Φ generates a covering sieve on *X*.

÷

- Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$ and $g \circ f : X \to Z$ are members of D, then $f : X \to Y$ is also a member of D.
- Given a member $f : X \twoheadrightarrow Y$ of E and a morphism $g : Y \to Z$ in C, if both $f : X \twoheadrightarrow Y$ and $g \circ f : X \to Z$ are members of \mathcal{D} , then $g : Y \to Z$ is also a member of \mathcal{D} .
- If f : X → Y is a member of D, then there is a κ-small set Φ of objects in C_{/X} with the following properties:
 - Φ generates a covering sieve on *X*.
 - For every $(U, x) \in \Phi$,

÷

- Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$ and $g \circ f : X \to Z$ are members of D, then $f : X \to Y$ is also a member of D.
- ▶ Given a member $f : X \twoheadrightarrow Y$ of E and a morphism $g : Y \to Z$ in C, if both $f : X \twoheadrightarrow Y$ and $g \circ f : X \to Z$ are members of \mathcal{D} , then $g : Y \to Z$ is also a member of \mathcal{D} .
- If f : X → Y is a member of D, then there is a κ-small set Φ of objects in C_{/X} with the following properties:
 - Φ generates a covering sieve on *X*.
 - For every $(U, x) \in \Phi$, both $x : U \to X$

÷

- Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$ and $g \circ f : X \to Z$ are members of D, then $f : X \to Y$ is also a member of D.
- Given a member $f : X \twoheadrightarrow Y$ of E and a morphism $g : Y \to Z$ in C, if both $f : X \twoheadrightarrow Y$ and $g \circ f : X \to Z$ are members of \mathcal{D} , then $g : Y \to Z$ is also a member of \mathcal{D} .
- If f : X → Y is a member of D, then there is a κ-small set Φ of objects in C_{/X} with the following properties:
 - Φ generates a covering sieve on *X*.
 - ▶ For every $(U, x) \in \Phi$, both $x : U \to X$ and $f \circ x : U \to Y$ are monomorphisms in *C*

÷

- Given morphisms $f : X \to Y$ and $g : Y \to Z$ in C, if both $g : Y \to Z$ and $g \circ f : X \to Z$ are members of D, then $f : X \to Y$ is also a member of D.
- ▶ Given a member $f : X \twoheadrightarrow Y$ of E and a morphism $g : Y \to Z$ in C, if both $f : X \twoheadrightarrow Y$ and $g \circ f : X \to Z$ are members of D, then $g : Y \to Z$ is also a member of D.
- If f : X → Y is a member of D, then there is a κ-small set Φ of objects in C_{/X} with the following properties:
 - Φ generates a covering sieve on *X*.
 - For every (U, x) ∈ Φ, both x : U → X and f ∘ x : U → Y are monomorphisms in C that are members of D.

	Details	
000	0000000000	000

Admissible ecumenae

Categories of spaces built from local models

Zhen Lin Low

イロト イロト イヨト イヨト

	Details	
000	000000000	000

Admissible ecumenae

An **admissible ecumene** is a tuple (C, D, E) where:

	Details	
000	000000000	000

Admissible ecumenae

An **admissible ecumene** is a tuple (C, D, E) where:

• C is a κ -ary extensive category.
	Details	
000	000000000	000

An **admissible ecumene** is a tuple (C, D, E) where:

- *C* is a κ -ary extensive category.
- ▶ E is a nice coverage on *C*.

	Details	
000	000000000	000

An **admissible ecumene** is a tuple (C, D, E) where:

- *C* is a κ -ary extensive category.
- E is a nice coverage on C.
- ▶ *D* is a class of local homeomorphisms.

	Details	
000	000000000	000

An **admissible ecumene** is a tuple (C, D, E) where:

- *C* is a κ -ary extensive category.
- ▶ E is a nice coverage on C.
- ▶ *D* is a class of local homeomorphisms.
- Every member of E is a member of D.

	Details	
000	000000000	000

An **admissible ecumene** is a tuple (C, D, E) where:

- *C* is a κ -ary extensive category.
- ▶ E is a nice coverage on C.
- ▶ *D* is a class of local homeomorphisms.
- Every member of E is a member of D.

	Details	
000	000000000	000

An **admissible ecumene** is a tuple (C, D, E) where:

- *C* is a κ -ary extensive category.
- ▶ E is a nice coverage on C.
- ▶ *D* is a class of local homeomorphisms.
- Every member of E is a member of \mathcal{D} .

	Details	
000	000000000	000

An **admissible ecumene** is a tuple (C, D, E) where:

- *C* is a κ -ary extensive category.
- E is a nice coverage on C.
- ▶ *D* is a class of local homeomorphisms.
- Every member of E is a member of D.

(The above definition is equivalent but not identical to the version in the thesis.) Given such:

▶ A local homeomorphism is a member of *D*.

Details	Digression
0000000000	

An **admissible ecumene** is a tuple (C, D, E) where:

- *C* is a κ -ary extensive category.
- E is a nice coverage on C.
- \blacktriangleright *D* is a class of local homeomorphisms.
- Every member of E is a member of D.

- A local homeomorphism is a member of \mathcal{D} .
- An open embedding is a monomorphism in C that is a local homeomorphism.

Details	Digression
000000000	

An **admissible ecumene** is a tuple (C, D, E) where:

- *C* is a κ -ary extensive category.
- E is a nice coverage on C.
- ▶ *D* is a class of local homeomorphisms.
- Every member of E is a member of D.

- A local homeomorphism is a member of \mathcal{D} .
- An open embedding is a monomorphism in C that is a local homeomorphism.
- An **open cover** of an object *X* is a set Φ of objects in $C_{/X}$ such that

Details	Digression
000000000	

An **admissible ecumene** is a tuple (C, D, E) where:

- *C* is a κ -ary extensive category.
- E is a nice coverage on C.
- ▶ *D* is a class of local homeomorphisms.
- Every member of E is a member of D.

- A local homeomorphism is a member of \mathcal{D} .
- An open embedding is a monomorphism in C that is a local homeomorphism.
- An **open cover** of an object X is a set Φ of objects in $C_{/X}$ such that Φ generates a covering sieve and,

Details	Digression
000000000	

An **admissible ecumene** is a tuple (C, D, E) where:

- *C* is a κ -ary extensive category.
- E is a nice coverage on C.
- ▶ *D* is a class of local homeomorphisms.
- Every member of E is a member of D.

- ► A local homeomorphism is a member of *D*.
- An open embedding is a monomorphism in C that is a local homeomorphism.
- An **open cover** of an object *X* is a set Φ of objects in $C_{/X}$ such that Φ generates a covering sieve and, for every $(U, x) \in \Phi$,

Details	Digression
000000000	

An **admissible ecumene** is a tuple (C, D, E) where:

- *C* is a κ -ary extensive category.
- ▶ E is a nice coverage on C.
- ▶ *D* is a class of local homeomorphisms.
- Every member of E is a member of D.

- A local homeomorphism is a member of \mathcal{D} .
- An open embedding is a monomorphism in C that is a local homeomorphism.
- An **open cover** of an object X is a set Φ of objects in $\mathcal{C}_{/X}$ such that Φ generates a covering sieve and, for every $(U, x) \in \Phi$,
 - $x: U \rightarrow X$ is an open embedding.

Intr	od		
00			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

(a) C is the category of κ -small Hausdorff spaces,

< E

(日)

(a) C is the category of κ -small Hausdorff spaces, D is the class of local homeomorphisms,

-∢≣⇒

< ロ > < 同 > < 三 >

(a) C is the category of κ-small Hausdorff spaces, D is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.

< ロ > < 同 > < 回 > < 回 > < 回 >

- (a) C is the category of κ-small Hausdorff spaces, D is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) C is the category of disjoint unions of κ -small families of affine schemes,

- (a) C is the category of κ-small Hausdorff spaces, D is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) C is the category of disjoint unions of κ-small families of affine schemes, D is the class of local isomorphisms,

- (a) C is the category of κ-small Hausdorff spaces, D is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) C is the category of disjoint unions of κ-small families of affine schemes, D is the class of local isomorphisms, and E is the class of surjective local isomorphisms.

- (a) C is the category of κ-small Hausdorff spaces, D is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) C is the category of disjoint unions of κ-small families of affine schemes, D is the class of local isomorphisms, and E is the class of surjective local isomorphisms.
- (c) (Assuming κ is big enough.)

- (a) C is the category of κ-small Hausdorff spaces, D is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) C is the category of disjoint unions of κ-small families of affine schemes, D is the class of local isomorphisms, and E is the class of surjective local isomorphisms.
- (c) (Assuming κ is big enough.) *C* is the category of disjoint unions of κ -small families of connected open subspaces of \mathbb{R}^n and smooth maps between them,

- (a) C is the category of κ-small Hausdorff spaces, D is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) C is the category of disjoint unions of κ-small families of affine schemes, D is the class of local isomorphisms, and E is the class of surjective local isomorphisms.
- (c) (Assuming κ is big enough.) C is the category of disjoint unions of κ-small families of connected open subspaces of ℝⁿ and smooth maps between them, D is the class of local diffeomorphisms,

- (a) C is the category of κ-small Hausdorff spaces, D is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) C is the category of disjoint unions of κ-small families of affine schemes, D is the class of local isomorphisms, and E is the class of surjective local isomorphisms.
- (c) (Assuming κ is big enough.) *C* is the category of disjoint unions of κ -small families of connected open subspaces of \mathbb{R}^n and smooth maps between them, \mathcal{D} is the class of local diffeomorphisms, and E is the class of surjective local diffeomorphisms.

	Details	
000	00000000000	000

Let X be an object in C.

Categories of spaces built from local models

イロト イロト イヨト イヨト

Let X be an object in C. An equivalence relation (R, d_0, d_1) on X is **tractable** if it satisfies the following conditions:

Let X be an object in C.

An equivalence relation (R, d_0, d_1) on X is **tractable** if it satisfies the following conditions:

▶ The projections $d_0, d_1 : R \to X$ are local homeomorphisms.

Let X be an object in C.

- ▶ The projections $d_0, d_1 : R \to X$ are local homeomorphisms.
- ▶ There is an open cover Φ of X such that,

Let X be an object in C.

- ▶ The projections $d_0, d_1 : R \to X$ are local homeomorphisms.
- ▶ There is an open cover Φ of *X* such that, for every $(U, x) \in \Phi$

Let X be an object in C.

- ▶ The projections $d_0, d_1 : R \to X$ are local homeomorphisms.
- ► There is an open cover Φ of X such that, for every $(U, x) \in \Phi$ and every object (T, r) in $C_{/R}$,

Let X be an object in C.

- ▶ The projections $d_0, d_1 : R \to X$ are local homeomorphisms.
- ► There is an open cover Φ of X such that, for every $(U, x) \in \Phi$ and every object (T, r) in $C_{/R}$, if both $d_0 \circ r, d_1 \circ r : T \to X$ factor through $x : U \to X$,

Let X be an object in C.

- ▶ The projections $d_0, d_1 : R \to X$ are local homeomorphisms.
- ▶ There is an open cover Φ of X such that, for every $(U, x) \in \Phi$ and every object (T, r) in $C_{/R}$, if both $d_0 \circ r, d_1 \circ r : T \to X$ factor through $x : U \to X$, then $d_0 \circ r = d_1 \circ r$.

Let X be an object in C.

An equivalence relation (R, d_0, d_1) on X is **tractable** if it satisfies the following conditions:

- ▶ The projections $d_0, d_1 : R \to X$ are local homeomorphisms.
- ▶ There is an open cover Φ of X such that, for every $(U, x) \in \Phi$ and every object (T, r) in $C_{/R}$, if both $d_0 \circ r$, $d_1 \circ r : T \to X$ factor through $x : U \to X$, then $d_0 \circ r = d_1 \circ r$.

Remark. The kernel pair of any local homeomorphism is tractable.

Let X be an object in C.

An equivalence relation (R, d_0, d_1) on X is **tractable** if it satisfies the following conditions:

- ▶ The projections $d_0, d_1 : R \rightarrow X$ are local homeomorphisms.
- ▶ There is an open cover Φ of X such that, for every $(U, x) \in \Phi$ and every object (T, r) in $C_{/R}$, if both $d_0 \circ r$, $d_1 \circ r : T \to X$ factor through $x : U \to X$, then $d_0 \circ r = d_1 \circ r$.

Remark. The kernel pair of any local homeomorphism is tractable.

Remark. Even in the category of topological spaces,

Let X be an object in C.

An equivalence relation (R, d_0, d_1) on X is **tractable** if it satisfies the following conditions:

- ▶ The projections $d_0, d_1 : R \rightarrow X$ are local homeomorphisms.
- ▶ There is an open cover Φ of X such that, for every $(U, x) \in \Phi$ and every object (T, r) in $C_{/R}$, if both $d_0 \circ r$, $d_1 \circ r : T \to X$ factor through $x : U \to X$, then $d_0 \circ r = d_1 \circ r$.

Remark. The kernel pair of any local homeomorphism is tractable.

Remark. Even in the category of topological spaces, the first condition does not imply the second condition,

Let X be an object in C.

An equivalence relation (R, d_0, d_1) on X is **tractable** if it satisfies the following conditions:

- ▶ The projections $d_0, d_1 : R \rightarrow X$ are local homeomorphisms.
- ▶ There is an open cover Φ of X such that, for every $(U, x) \in \Phi$ and every object (T, r) in $C_{/R}$, if both $d_0 \circ r, d_1 \circ r : T \to X$ factor through $x : U \to X$, then $d_0 \circ r = d_1 \circ r$.

Remark. The kernel pair of any local homeomorphism is tractable.

Remark. Even in the category of topological spaces, the first condition does **not** imply the second condition, **unless** we assume that $\langle d_1, d_0 \rangle : R \to X \times X$ is a topological embedding.

In		du	ti		
	o				

Effective admissible ecumenae

æ

・ロト ・四ト ・ヨト ・ヨト
An admissible ecumene is **effective** if it has the following property:

イロト イロト イヨト イヨト

An admissible ecumene is effective if it has the following property:

Every tractable equivalence relation is the kernel pair of some covering local homeomorphism.

An admissible ecumene is effective if it has the following property:

Every tractable equivalence relation is the kernel pair of some covering local homeomorphism.

Remark. In an effective admissible ecumene,

An admissible ecumene is effective if it has the following property:

 Every tractable equivalence relation is the kernel pair of some covering local homeomorphism.

Remark. In an effective admissible ecumene, an effective epimorphism is a (covering) local homeomorphism

An admissible ecumene is effective if it has the following property:

 Every tractable equivalence relation is the kernel pair of some covering local homeomorphism.

Remark. In an effective admissible ecumene, an effective epimorphism is a (covering) local homeomorphism if and only if its kernel pair is tractable.

An admissible ecumene is effective if it has the following property:

 Every tractable equivalence relation is the kernel pair of some covering local homeomorphism.

Remark. In an effective admissible ecumene, an effective epimorphism is a (covering) local homeomorphism if and only if its kernel pair is tractable.

Remark. In an effective admissible ecumene,

An admissible ecumene is effective if it has the following property:

Every tractable equivalence relation is the kernel pair of some covering local homeomorphism.

Remark. In an effective admissible ecumene, an effective epimorphism is a (covering) local homeomorphism if and only if its kernel pair is tractable.

Remark. In an effective admissible ecumene, every local homeomorphism factors as

An admissible ecumene is effective if it has the following property:

Every tractable equivalence relation is the kernel pair of some covering local homeomorphism.

Remark. In an effective admissible ecumene, an effective epimorphism is a (covering) local homeomorphism if and only if its kernel pair is tractable.

Remark. In an effective admissible ecumene, every local homeomorphism factors as a covering local homeomorphism

An admissible ecumene is effective if it has the following property:

Every tractable equivalence relation is the kernel pair of some covering local homeomorphism.

Remark. In an effective admissible ecumene, an effective epimorphism is a (covering) local homeomorphism if and only if its kernel pair is tractable.

Remark. In an effective admissible ecumene, every local homeomorphism factors as a covering local homeomorphism followed by an open embedding.

	Details	
000	000000000000	000

(a) C is the category of κ -small locally Hausdorff spaces,

∢ Ξ

< □ > < @ > < Ξ

(a) C is the category of κ -small locally Hausdorff spaces, D is the class of local homeomorphisms,

∢ Ξ

< □ > < @ > < Ξ

(a) *C* is the category of κ -small locally Hausdorff spaces, \mathcal{D} is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.

< ロ > < 同 > < 三 >

- (a) *C* is the category of κ -small locally Hausdorff spaces, \mathcal{D} is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) (Assuming $\kappa = \aleph_0$.)

- (a) *C* is the category of κ -small locally Hausdorff spaces, \mathcal{D} is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) (Assuming $\kappa = \aleph_0$.) *C* is the category of quasicompact quasiseparated schemes,

- (a) *C* is the category of κ -small locally Hausdorff spaces, \mathcal{D} is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) (Assuming $\kappa = \aleph_0$.) *C* is the category of quasicompact quasiseparated schemes, *D* is the class of local isomorphisms,

- (a) C is the category of κ-small locally Hausdorff spaces, D is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) (Assuming $\kappa = \aleph_0$.) C is the category of quasicompact quasiseparated schemes, D is the class of local isomorphisms, and E is the class of surjective local isomorphisms.

- (a) *C* is the category of κ -small locally Hausdorff spaces, \mathcal{D} is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) (Assuming $\kappa = \aleph_0$.) C is the category of quasicompact quasiseparated schemes, D is the class of local isomorphisms, and E is the class of surjective local isomorphisms.
- (c) (Assuming κ is big enough.)

- (a) *C* is the category of κ -small locally Hausdorff spaces, \mathcal{D} is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) (Assuming $\kappa = \aleph_0$.) C is the category of quasicompact quasiseparated schemes, D is the class of local isomorphisms, and E is the class of surjective local isomorphisms.
- (c) (Assuming κ is big enough.) *C* is the category of κ -small smooth manifolds

- (a) *C* is the category of κ -small locally Hausdorff spaces, \mathcal{D} is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) (Assuming $\kappa = \aleph_0$.) *C* is the category of quasicompact quasiseparated schemes, *D* is the class of local isomorphisms, and E is the class of surjective local isomorphisms.
- (c) (Assuming κ is big enough.) *C* is the category of κ -small smooth manifolds (not necessarily Hausdorff or second-countable),

- (a) *C* is the category of κ -small locally Hausdorff spaces, \mathcal{D} is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) (Assuming $\kappa = \aleph_0$.) C is the category of quasicompact quasiseparated schemes, D is the class of local isomorphisms, and E is the class of surjective local isomorphisms.
- (c) (Assuming κ is big enough.) C is the category of κ-small smooth manifolds (not necessarily Hausdorff or second-countable), D is the class of local diffeomorphisms,

- (a) C is the category of κ-small locally Hausdorff spaces, D is the class of local homeomorphisms, and E is the class of surjective local homeomorphisms.
- (b) (Assuming $\kappa = \aleph_0$.) C is the category of quasicompact quasiseparated schemes, D is the class of local isomorphisms, and E is the class of surjective local isomorphisms.
- (c) (Assuming κ is big enough.) C is the category of κ-small smooth manifolds (not necessarily Hausdorff or second-countable), D is the class of local diffeomorphisms, and E is the class of surjective local diffeomorphisms.

Details	
00000000000000	

Categories of spaces built from local models

< ≣⇒

Details	
0000000000000	

Let $S = \mathbf{E}\mathbf{x}(\mathcal{C}, \mathsf{E})$.

-

Details	
000000000 00	

Let S = Ex(C, E). Recall that S is a κ -ary pretopos.

Details	
00000000000000	

Let S = Ex(C, E). Recall that S is a κ -ary pretopos. There is a unique class \overline{D} of morphisms in S such that:

Let $S = \mathbf{E}\mathbf{x}(C, \mathsf{E})$. Recall that S is a κ -ary pretopos. There is a unique class \overline{D} of morphisms in S such that:

• Every member of D is also a member of \overline{D} .

< < >> < <</>

Let S = Ex(C, E). Recall that S is a κ -ary pretopos. There is a unique class \overline{D} of morphisms in S such that:

- Every member of D is also a member of \overline{D} .
- ▶ If $h : A \to B$ is a member of \overline{D} and B is an object in C,

Let S = Ex(C, E). Recall that S is a κ -ary pretopos.

- Every member of D is also a member of \overline{D} .
- If h : A → B is a member of D
 and B is an object in C, then there is an effective epimorphism p : X → A in S

Let S = Ex(C, E). Recall that S is a κ -ary pretopos.

- Every member of D is also a member of \overline{D} .
- If h : A → B is a member of D
 and B is an object in C, then there is an effective epimorphism p : X → A in S such that X is an object in C

Let $S = \mathbf{E}\mathbf{x}(C, \mathsf{E})$. Recall that S is a κ -ary pretopos.

- Every member of D is also a member of \overline{D} .
- If h : A → B is a member of D
 and B is an object in C, then there is an effective epimorphism p : X → A in S such that X is an object in C and p : X → A is a member of D
 .

Let $S = \mathbf{E}\mathbf{x}(\mathcal{C}, \mathsf{E})$.

Recall that S is a κ -ary pretopos.

- Every member of D is also a member of \overline{D} .
- If h : A → B is a member of D
 and B is an object in C, then there is an effective epimorphism p : X → A in S such that X is an object in C and p : X → A is a member of D
 .
- If the pullback of a monomorphism $f : X \rightarrow Y$ in S along some effective epimorphism is a member of \overline{D} ,

Let $S = \mathbf{E}\mathbf{x}(\mathcal{C}, \mathsf{E})$.

Recall that *S* is a κ -ary pretopos.

- Every member of D is also a member of \overline{D} .
- If h : A → B is a member of D
 and B is an object in C, then there is an effective epimorphism p : X → A in S such that X is an object in C and p : X → A is a member of D
 .
- If the pullback of a monomorphism $f : X \rightarrow Y$ in S along some effective epimorphism is a member of \overline{D} , then $f : X \rightarrow Y$ is also a member of \overline{D} .

Let $S = \mathbf{E}\mathbf{x}(\mathcal{C}, \mathsf{E})$.

Recall that S is a κ -ary pretopos.

- Every member of D is also a member of \overline{D} .
- If h : A → B is a member of D
 and B is an object in C, then there is an effective epimorphism p : X → A in S such that X is an object in C and p : X → A is a member of D
 .
- If the pullback of a monomorphism $f : X \rightarrow Y$ in S along some effective epimorphism is a member of \overline{D} , then $f : X \rightarrow Y$ is also a member of \overline{D} .
- (S, \overline{D}, K) is an effective admissible ecumene,

Let $S = \mathbf{E}\mathbf{x}(\mathcal{C}, \mathsf{E})$.

```
Recall that S is a \kappa-ary pretopos.
```

- Every member of D is also a member of \overline{D} .
- If h : A → B is a member of D
 and B is an object in C, then there is an effective epimorphism p : X → A in S such that X is an object in C and p : X → A is a member of D
 .
- If the pullback of a monomorphism $f : X \rightarrow Y$ in S along some effective epimorphism is a member of \overline{D} , then $f : X \rightarrow Y$ is also a member of \overline{D} .
- (S, \overline{D}, K) is an effective admissible ecumene, where K is the class of effective epimorphisms that are members of \overline{D} .

Let $S = \mathbf{E}\mathbf{x}(\mathcal{C}, \mathsf{E})$.

Recall that S is a κ -ary pretopos.

There is a unique class \bar{D} of morphisms in S such that:

- Every member of D is also a member of \overline{D} .
- If h : A → B is a member of D
 and B is an object in C, then there is an effective epimorphism p : X → A in S such that X is an object in C and p : X → A is a member of D
 .
- If the pullback of a monomorphism $f : X \rightarrow Y$ in S along some effective epimorphism is a member of \overline{D} , then $f : X \rightarrow Y$ is also a member of \overline{D} .
- (S, \overline{D}, K) is an effective admissible ecumene, where K is the class of effective epimorphisms that are members of \overline{D} .
- A charted object in ${\mathcal S}$ is an object A in ${\mathcal S}$ such that

イロト イタト イヨト イヨト
Charted objects

Let $S = \mathbf{E}\mathbf{x}(C, \mathsf{E})$.

Recall that S is a κ -ary pretopos.

There is a unique class \bar{D} of morphisms in S such that:

- Every member of D is also a member of \overline{D} .
- If h : A → B is a member of D
 and B is an object in C, then there is an effective epimorphism p : X → A in S such that X is an object in C and p : X → A is a member of D
 .
- If the pullback of a monomorphism $f : X \rightarrow Y$ in S along some effective epimorphism is a member of \overline{D} , then $f : X \rightarrow Y$ is also a member of \overline{D} .
- (S, \overline{D}, K) is an effective admissible ecumene, where K is the class of effective epimorphisms that are members of \overline{D} .

A **charted object** in S is an object A in S such that there exist an object X in C

くロン (語) (目) (日)

Charted objects

Let $S = \mathbf{E}\mathbf{x}(\mathcal{C}, \mathsf{E})$.

Recall that S is a κ -ary pretopos.

There is a unique class \bar{D} of morphisms in S such that:

- Every member of D is also a member of \overline{D} .
- If h : A → B is a member of D
 and B is an object in C, then there is an effective epimorphism p : X → A in S such that X is an object in C and p : X → A is a member of D
 .
- If the pullback of a monomorphism $f : X \rightarrow Y$ in S along some effective epimorphism is a member of \overline{D} , then $f : X \rightarrow Y$ is also a member of \overline{D} .
- (S, \overline{D}, K) is an effective admissible ecumene, where K is the class of effective epimorphisms that are members of \overline{D} .

A charted object in S is an object A in S such that there exist an object X in C and a covering local homeomorphism $X \twoheadrightarrow A$ in S.

(1) マン・ビート (1) マン・

Details	
0000000000000	

Categories of spaces built from local models

Zhen Lin Low

- ∢ ≣ →

▲□▶ ▲圖▶ ▲厘▶

	Details	
000	00000000000000	000

Let (C_0, D_0, E_0) and (C_1, D_1, E_1) be admissible ecumenae.

< E >

	Details	
000	0000000000000	000

Let (C_0, D_0, E_0) and (C_1, D_1, E_1) be admissible ecumenae. An admissible functor $F : (C_0, D_0, \mathsf{E}_0) \to (C_1, D_1, \mathsf{E}_1)$

	Details	
000	0000000000000	000

	Details	
000	0000000000000	000

Let (C_0, D_0, E_0) and (C_1, D_1, E_1) be admissible ecumenae. An **admissible functor** $F : (C_0, D_0, E_0) \rightarrow (C_1, D_1, E_1)$ is a functor $F : C_0 \rightarrow C_1$ with the following properties:

• $F: C_0 \rightarrow C_1$ preserves κ -ary coproducts.

Details	
0000000000000	

- $F : C_0 \rightarrow C_1$ preserves κ -ary coproducts.
- F preserves local homeomorphisms

Details	
000000000000	

- $F: C_0 \rightarrow C_1$ preserves κ -ary coproducts.
- ► *F* preserves local homeomorphisms and covering local homeomorphisms.

Introduction	Details	
	000000000000	

- ► $F : C_0 \rightarrow C_1$ preserves κ -ary coproducts.
- ► *F* preserves local homeomorphisms and covering local homeomorphisms.
- ▶ *F* preserves pullbacks of local homeomorphisms.

Introduction	Details	
	000000000000	

- ► $F : C_0 \rightarrow C_1$ preserves κ -ary coproducts.
- ► *F* preserves local homeomorphisms and covering local homeomorphisms.
- ▶ *F* preserves pullbacks of local homeomorphisms.
- For every E_0 -locally 1-presentable E_0 -sheaf A on C_0 ,

Introduction	Details	
	000000000000	

- ► $F : C_0 \rightarrow C_1$ preserves κ -ary coproducts.
- ► *F* preserves local homeomorphisms and covering local homeomorphisms.
- ▶ *F* preserves pullbacks of local homeomorphisms.
- ► For every E₀-locally 1-presentable E₀-sheaf A on C₀, there exist a E₁-locally 1-presentable E₁-sheaf F₁A on C₁

Introduction	Details	
	000000000000	

- $F: C_0 \rightarrow C_1$ preserves κ -ary coproducts.
- ► *F* preserves local homeomorphisms and covering local homeomorphisms.
- ▶ *F* preserves pullbacks of local homeomorphisms.
- ► For every E₀-locally 1-presentable E₀-sheaf A on C₀, there exist a E₁-locally 1-presentable E₁-sheaf $F_!A$ on C_1 and a morphism $\sigma_A : A \to F^*F_!A$ such that,

Introduction	Details	
	000000000000	

Let (C_0, D_0, E_0) and (C_1, D_1, E_1) be admissible ecumenae. An **admissible functor** $F : (C_0, D_0, E_0) \rightarrow (C_1, D_1, E_1)$ is a functor $F : C_0 \rightarrow C_1$ with the following properties:

- $F: C_0 \rightarrow C_1$ preserves κ -ary coproducts.
- ► *F* preserves local homeomorphisms and covering local homeomorphisms.
- ▶ *F* preserves pullbacks of local homeomorphisms.
- ► For every E_0 -locally 1-presentable E_0 -sheaf A on C_0 , there exist a E_1 -locally 1-presentable E_1 -sheaf $F_!A$ on C_1 and a morphism $\sigma_A : A \to F^*F_!A$ such that, for every E_1 -locally 1-presentable E_1 -sheaf B on C_1 ,

イロト イ理ト イヨト イヨト

Introduction	Details	
	000000000000	

Let (C_0, D_0, E_0) and (C_1, D_1, E_1) be admissible ecumenae. An **admissible functor** $F : (C_0, D_0, E_0) \rightarrow (C_1, D_1, E_1)$ is a functor $F : C_0 \rightarrow C_1$ with the following properties:

- ► $F : C_0 \rightarrow C_1$ preserves κ -ary coproducts.
- ► *F* preserves local homeomorphisms and covering local homeomorphisms.
- ▶ *F* preserves pullbacks of local homeomorphisms.
- ► For every E_0 -locally 1-presentable E_0 -sheaf A on C_0 , there exist a E_1 -locally 1-presentable E_1 -sheaf $F_!A$ on C_1 and a morphism $\sigma_A : A \to F^*F_!A$ such that, for every E_1 -locally 1-presentable E_1 -sheaf B on C_1 , the following is a bijection:

$$\operatorname{Hom}(F_!A, B) \to \operatorname{Hom}(A, F^*B)$$
$$h \mapsto F^*h \circ \sigma_A$$

イロト イ理ト イヨト イヨト

Details	
00000000000	

Categories of spaces built from local models

<ロ> (四) (四) (日) (日) (日)

	Details	
000	000000000000	000

Let \mathcal{X}_0 be the full subcategory of charted objects in $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

	Details	
000	00000000000	000

Let \mathcal{X}_0 be the full subcategory of charted objects in $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

Remark. \mathcal{X}_0 inherits the structure of an effective admissible ecumene from $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

Details	
0000000000	

Let \mathcal{X}_0 be the full subcategory of charted objects in $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

Remark. \mathcal{X}_0 inherits the structure of an effective admissible ecumene from $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

Remark. The inclusion $C_0 \hookrightarrow \mathcal{X}_0$ is an admissible functor.

Details	
00000000000	

Let \mathcal{X}_0 be the full subcategory of charted objects in $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

Remark. \mathcal{X}_0 inherits the structure of an effective admissible ecumene from $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

Remark. The inclusion $C_0 \hookrightarrow \mathcal{X}_0$ is an admissible functor.

Theorem. If $F : C_0 \rightarrow C_1$ is an admissible functor

Details	
00000000000	

Let \mathcal{X}_0 be the full subcategory of charted objects in $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

Remark. \mathcal{X}_0 inherits the structure of an effective admissible ecumene from $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

Remark. The inclusion $C_0 \hookrightarrow \mathcal{X}_0$ is an admissible functor.

Theorem. If $F : C_0 \rightarrow C_1$ is an admissible functor and C_1 is an effective admissible ecumene,

Details	
0000000000	

Let \mathcal{X}_0 be the full subcategory of charted objects in $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

Remark. \mathcal{X}_0 inherits the structure of an effective admissible ecumene from $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

Remark. The inclusion $C_0 \hookrightarrow \mathcal{X}_0$ is an admissible functor.

Theorem. If $F : C_0 \rightarrow C_1$ is an admissible functor and C_1 is an effective admissible ecumene, then:

(i) There exist an admissible functor $\overline{F} : \mathcal{X}_0 \to C_1$ and an isomorphism $\eta : F \Rightarrow \overline{F}$ of functors $C_0 \to C_1$.

Details	
0000000000	

Let \mathcal{X}_0 be the full subcategory of charted objects in $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

Remark. \mathcal{X}_0 inherits the structure of an effective admissible ecumene from $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

Remark. The inclusion $C_0 \hookrightarrow \mathcal{X}_0$ is an admissible functor.

Theorem. If $F : C_0 \rightarrow C_1$ is an admissible functor and C_1 is an effective admissible ecumene, then:

- (i) There exist an admissible functor $\overline{F} : \mathcal{X}_0 \to C_1$ and an isomorphism $\eta : F \Rightarrow \overline{F}$ of functors $C_0 \to C_1$.
- (ii) Moreover, any such (\bar{F}, η) is a pointwise left Kan extension of $F: C_0 \to C_1$ along the inclusion $C_0 \hookrightarrow \mathcal{X}_0$.

Details	
00000000000	

Let \mathcal{X}_0 be the full subcategory of charted objects in $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

Remark. \mathcal{X}_0 inherits the structure of an effective admissible ecumene from $\mathbf{Ex}(\mathcal{C}_0, \mathsf{E}_0)$.

Remark. The inclusion $C_0 \hookrightarrow \mathcal{X}_0$ is an admissible functor.

Theorem. If $F : C_0 \rightarrow C_1$ is an admissible functor and C_1 is an effective admissible ecumene, then:

- (i) There exist an admissible functor $\overline{F} : \mathcal{X}_0 \to C_1$ and an isomorphism $\eta : F \Rightarrow \overline{F}$ of functors $C_0 \to C_1$.
- (ii) Moreover, any such (\bar{F}, η) is a pointwise left Kan extension of $F: C_0 \to C_1$ along the inclusion $C_0 \hookrightarrow \mathcal{X}_0$.

Remark. This is most of the hard work in showing that the 2-subcategory of effective admissible ecumenae is bireflective in the 2-category of admissible ecumenae.

	Digression
	000

Categories of spaces built from local models

イロト イロト イヨト イヨト

		Digression
000	00000000000	•00

	Digression
	000

A class of étale maps in κ -ary pretopos S is a class D of morphisms in S that satisfies the following axioms:

A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.

	Digression
	0 00

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.

	Digression
	•00

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A3. If the pullback of a morphism $f : X \to Y$ in S along an effective epimorphism is in D,

	Digression
	•00

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A3. If the pullback of a morphism $f : X \to Y$ in S along an effective epimorphism is in D, then $f : X \to Y$ is also in D.

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A3. If the pullback of a morphism $f : X \to Y$ in S along an effective epimorphism is in D, then $f : X \to Y$ is also in D.
- A4. For every κ -small set I,

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A3. If the pullback of a morphism $f : X \to Y$ in S along an effective epimorphism is in D, then $f : X \to Y$ is also in D.
- A4. For every κ -small set $I, \nabla : \coprod_{i \in I} 1 \to 1$ is in \mathcal{D} .

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A3. If the pullback of a morphism $f : X \to Y$ in S along an effective epimorphism is in D, then $f : X \to Y$ is also in D.
- A4. For every κ -small set $I, \nabla : \coprod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. \mathcal{D} is closed under κ -ary coproduct.

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A3. If the pullback of a morphism $f : X \to Y$ in S along an effective epimorphism is in D, then $f : X \to Y$ is also in D.
- A4. For every κ -small set $I, \nabla : \prod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. \mathcal{D} is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S,

	Digression
	•oo

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A3. If the pullback of a morphism $f : X \to Y$ in S along an effective epimorphism is in D, then $f : X \to Y$ is also in D.
- A4. For every κ -small set $I, \nabla : \prod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. \mathcal{D} is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S, the relative diagonal $\Delta_f : X \to X \times_Y X$ is in D.

	Digression
	•oo

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A3. If the pullback of a morphism $f : X \to Y$ in S along an effective epimorphism is in D, then $f : X \to Y$ is also in D.
- A4. For every κ -small set $I, \nabla : \prod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. \mathcal{D} is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S, the relative diagonal $\Delta_f : X \to X \times_Y X$ is in D.
- A8. Given an effective epimorphism $f : X \twoheadrightarrow Y$ in S
| | Digression |
|--|------------|
| | •oo |
| | |

A class of étale maps in κ -ary pretopos S is a class D of morphisms in S that satisfies the following axioms:

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A3. If the pullback of a morphism $f : X \to Y$ in S along an effective epimorphism is in D, then $f : X \to Y$ is also in D.
- A4. For every κ -small set $I, \nabla : \prod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. D is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S, the relative diagonal $\Delta_f : X \to X \times_Y X$ is in D.
- A8. Given an effective epimorphism $f : X \twoheadrightarrow Y$ in S and a morphism $g : Y \to Z$ in S,

	Digression
	•oo

A class of étale maps in κ -ary pretopos S is a class D of morphisms in S that satisfies the following axioms:

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A3. If the pullback of a morphism $f : X \to Y$ in S along an effective epimorphism is in D, then $f : X \to Y$ is also in D.
- A4. For every κ -small set $I, \nabla : \prod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. \mathcal{D} is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S, the relative diagonal $\Delta_f : X \to X \times_Y X$ is in D.
- A8. Given an effective epimorphism $f : X \twoheadrightarrow Y$ in S and a morphism $g : Y \to Z$ in S, if both $f : X \twoheadrightarrow Y$

	Digression
	•oo

A class of étale maps in κ -ary pretopos S is a class D of morphisms in S that satisfies the following axioms:

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A3. If the pullback of a morphism $f : X \to Y$ in S along an effective epimorphism is in D, then $f : X \to Y$ is also in D.
- A4. For every κ -small set $I, \nabla : \prod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. D is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S, the relative diagonal $\Delta_f : X \to X \times_Y X$ is in D.
- A8. Given an effective epimorphism $f : X \twoheadrightarrow Y$ in S and a morphism $g : Y \to Z$ in S, if both $f : X \twoheadrightarrow Y$ and $g \circ f : X \to Z$ are in D,

	Digression
	000

A class of étale maps in κ -ary pretopos S is a class D of morphisms in S that satisfies the following axioms:

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A3. If the pullback of a morphism $f : X \to Y$ in S along an effective epimorphism is in D, then $f : X \to Y$ is also in D.
- A4. For every κ -small set $I, \nabla : \prod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. D is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S, the relative diagonal $\Delta_f : X \to X \times_Y X$ is in D.
- A8. Given an effective epimorphism $f : X \twoheadrightarrow Y$ in S and a morphism $g : Y \to Z$ in S, if both $f : X \twoheadrightarrow Y$ and $g \circ f : X \to Z$ are in D, then $g : Y \to Z$ is also in D.

イロト イタト イヨト イヨト

		Digression
000	00000000000	000

Categories of spaces built from local models

≺ 臣 →

	Digression
	000

	Digression
	000

A gros pretopos is a κ -ary pretopos S with a class D of morphisms that satisfies the following axioms:

A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A4. For every κ -small set I,

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A4. For every κ -small set $I, \nabla : \coprod_{i \in I} 1 \to 1$ is in \mathcal{D} .

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A4. For every κ -small set $I, \nabla : \coprod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. \mathcal{D} is closed under κ -ary coproduct.

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A4. For every κ -small set $I, \nabla : \coprod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. D is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S,

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A4. For every κ -small set $I, \nabla : \coprod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. \mathcal{D} is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S, the relative diagonal $\Delta_f : X \to X \times_Y X$ is in D.

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A4. For every κ -small set $I, \nabla : \coprod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. D is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S, the relative diagonal $\Delta_f : X \to X \times_Y X$ is in D.
- A8⁺. Given an effective epimorphism $f : X \twoheadrightarrow Y$ in S,

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A4. For every κ -small set $I, \nabla : \coprod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. D is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S, the relative diagonal $\Delta_f : X \to X \times_Y X$ is in D.
- A8⁺. Given an effective epimorphism $f : X \twoheadrightarrow Y$ in S, a morphism $g : Y \to Z$ in S,

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A4. For every κ -small set $I, \nabla : \coprod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. D is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S, the relative diagonal $\Delta_f : X \to X \times_Y X$ is in D.
- A8⁺. Given an effective epimorphism $f : X \twoheadrightarrow Y$ in S, a morphism $g : Y \to Z$ in S, and a kernel pair (R, d_0, d_1) of $f : X \twoheadrightarrow Y$ in S,

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A4. For every κ -small set $I, \nabla : \coprod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. D is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S, the relative diagonal $\Delta_f : X \to X \times_Y X$ is in D.
- A8⁺. Given an effective epimorphism $f : X \twoheadrightarrow Y$ in S, a morphism $g : Y \to Z$ in S, and a kernel pair (R, d_0, d_1) of $f : X \twoheadrightarrow Y$ in S, if $d_0, d_1 : R \to X$

	Digression
	000

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A4. For every κ -small set $I, \nabla : \coprod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. D is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S, the relative diagonal $\Delta_f : X \to X \times_Y X$ is in D.
- A8⁺. Given an effective epimorphism $f : X \twoheadrightarrow Y$ in S, a morphism $g : Y \to Z$ in S, and a kernel pair (R, d_0, d_1) of $f : X \twoheadrightarrow Y$ in S, if $d_0, d_1 : R \to X$ and $g \circ f : X \to Z$ are all in D,

	Digression
	000

A **gros pretopos** is a κ -ary pretopos S with a class D of morphisms that satisfies the following axioms:

- A1. Every isomorphism is in \mathcal{D} and \mathcal{D} is closed under composition.
- A2. \mathcal{D} is closed under pullback.
- A4. For every κ -small set $I, \nabla : \prod_{i \in I} 1 \to 1$ is in \mathcal{D} .
- A5. \mathcal{D} is closed under κ -ary coproduct.
- A7. For every morphism $f : X \to Y$ in S, the relative diagonal $\Delta_f : X \to X \times_Y X$ is in D.
- A8⁺. Given an effective epimorphism $f : X \twoheadrightarrow Y$ in S, a morphism $g : Y \to Z$ in S, and a kernel pair (R, d_0, d_1) of $f : X \twoheadrightarrow Y$ in S, if $d_0, d_1 : R \to X$ and $g \circ f : X \to Z$ are all in D, then both $f : X \twoheadrightarrow Y$ and $g : Y \to Z$ are also in D.

イロト イポト イヨト イヨト 一日

		Digression
000	00000000000	000

Categories of spaces built from local models

≺ 臣 →

	Digression
	000

Remark. Axioms A3 and A8 imply axiom A8⁺.

	Digression
	000

Remark. Axioms A3 and A8 imply axiom A8⁺.

In particular, any pretopos with a class of étale maps is a gros pretopos.

	Digression
	000

Remark. Axioms A3 and A8 imply axiom A8⁺.

In particular, any pretopos with a class of étale maps is a gros pretopos.

Remark. Any gros pretopos satisfies axiom A8.

Categories of spaces built from local models

		Digression
000	00000000000	000
_		

Remark. Axioms A3 and A8 imply axiom A8⁺.

In particular, any pretopos with a class of étale maps is a gros pretopos.

Remark. Any gros pretopos satisfies axiom A8.

Thus, if a gros pretopos satisfies axiom A3,

Details	Digression
	000

Remark. Axioms A3 and A8 imply axiom A8⁺.

In particular, any pretopos with a class of étale maps is a gros pretopos.

Remark. Any gros pretopos satisfies axiom A8.

Thus, if a gros pretopos satisfies axiom A3, then the distinguished morphisms comprise a class of étale maps.

	Digression
	000

Remark. Axioms A3 and A8 imply axiom A8⁺.

In particular, any pretopos with a class of étale maps is a gros pretopos.

Remark. Any gros pretopos satisfies axiom A8.

Thus, if a gros pretopos satisfies axiom A3, then the distinguished morphisms comprise a class of étale maps.

Remark. Let (S, D) be a gros pretopos.

	Digression
	000

Remark. Axioms A3 and A8 imply axiom A8⁺.

In particular, any pretopos with a class of étale maps is a gros pretopos.

Remark. Any gros pretopos satisfies axiom A8.

Thus, if a gros pretopos satisfies axiom A3, then the distinguished morphisms comprise a class of étale maps.

Remark. Let (S, D) be a gros pretopos.

For every object A in S,

	Digression
	000

Remark. Axioms A3 and A8 imply axiom A8⁺.

In particular, any pretopos with a class of étale maps is a gros pretopos.

Remark. Any gros pretopos satisfies axiom A8.

Thus, if a gros pretopos satisfies axiom A3, then the distinguished morphisms comprise a class of étale maps.

Remark. Let (S, D) be a gros pretopos.

For every object A in S, $D_{/A}$ is a full subcategory of $S_{/A}$ and is a κ -ary pretopos.

	Digression
	000

Remark. Axioms A3 and A8 imply axiom A8⁺.

In particular, any pretopos with a class of étale maps is a gros pretopos.

Remark. Any gros pretopos satisfies axiom A8.

Thus, if a gros pretopos satisfies axiom A3, then the distinguished morphisms comprise a class of étale maps.

Remark. Let (S, D) be a gros pretopos.

For every object A in S, $D_{/A}$ is a full subcategory of $S_{/A}$ and is a κ -ary pretopos. This is the **petit pretopos** over A.

	Digression
	000

Remark. Axioms A3 and A8 imply axiom A8⁺.

In particular, any pretopos with a class of étale maps is a gros pretopos.

Remark. Any gros pretopos satisfies axiom A8.

Thus, if a gros pretopos satisfies axiom A3, then the distinguished morphisms comprise a class of étale maps.

Remark. Let (S, D) be a gros pretopos.

For every object A in S, $D_{/A}$ is a full subcategory of $S_{/A}$ and is a κ -ary pretopos. This is the **petit pretopos** over A.

Remark. Let (C, D, E) be an admissible ecumene,

	Digression
	000

Remark. Axioms A3 and A8 imply axiom A8⁺.

In particular, any pretopos with a class of étale maps is a gros pretopos.

Remark. Any gros pretopos satisfies axiom A8.

Thus, if a gros pretopos satisfies axiom A3, then the distinguished morphisms comprise a class of étale maps.

Remark. Let (S, D) be a gros pretopos.

For every object A in S, $D_{/A}$ is a full subcategory of $S_{/A}$ and is a κ -ary pretopos. This is the **petit pretopos** over A.

Remark. Let (C, D, E) be an admissible ecumene, let S = Ex(C, E),

	Digression
	000

Remark. Axioms A3 and A8 imply axiom A8⁺.

In particular, any pretopos with a class of étale maps is a gros pretopos.

Remark. Any gros pretopos satisfies axiom A8.

Thus, if a gros pretopos satisfies axiom A3, then the distinguished morphisms comprise a class of étale maps.

Remark. Let (S, D) be a gros pretopos.

For every object A in S, $D_{/A}$ is a full subcategory of $S_{/A}$ and is a κ -ary pretopos. This is the **petit pretopos** over A.

Remark. Let (C, D, E) be an admissible ecumene, let S = Ex(C, E), and let \overline{D} be the induced class of local homeomorphisms.

	Digression
	000

Remark. Axioms A3 and A8 imply axiom A8⁺.

In particular, any pretopos with a class of étale maps is a gros pretopos.

Remark. Any gros pretopos satisfies axiom A8.

Thus, if a gros pretopos satisfies axiom A3, then the distinguished morphisms comprise a class of étale maps.

Remark. Let (S, D) be a gros pretopos.

For every object A in S, $D_{/A}$ is a full subcategory of $S_{/A}$ and is a κ -ary pretopos. This is the **petit pretopos** over A.

Remark. Let (C, D, E) be an admissible ecumene, let S = Ex(C, E), and let \overline{D} be the induced class of local homeomorphisms. Then (S, \overline{D}) is a gros pretopos,

	Digression
	000

Remark. Axioms A3 and A8 imply axiom A8⁺.

In particular, any pretopos with a class of étale maps is a gros pretopos.

Remark. Any gros pretopos satisfies axiom A8.

Thus, if a gros pretopos satisfies axiom A3, then the distinguished morphisms comprise a class of étale maps.

Remark. Let (S, D) be a gros pretopos.

For every object A in S, $D_{/A}$ is a full subcategory of $S_{/A}$ and is a κ -ary pretopos. This is the **petit pretopos** over A.

Remark. Let (C, D, E) be an admissible ecumene, let S = Ex(C, E), and let \overline{D} be the induced class of local homeomorphisms.

Then (S, \overline{D}) is a gros pretopos, but axiom A3 is not satisfied in general.