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Introduction: categorical	tools	for	homological	algebra

§ Concrete	aim: understanding	(co)homology	of	groups

§ Which	aspects	of	group	cohomology	are	typical	for	groups,
and	which	function	for	purely	formal	reasons, so	that	a	categorical
argument	suffices	to	understand	and	apply	these	in	other	settings?

§ Conversely, what	do	our	“homological	needs”	tell	us
about	categories	of	non-abelian	algebraic	structures?

Today: towards	an	algebraic	version	of	the Seifert–van	Kampen theorem
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The	classical	Seifert–van	Kampen	theorem [1931, 1933]

Consider	a	square	of	pointed	topological	spaces	as	on	the	left,

O
j ,2

i
��

B

ιB
��

A ιA
,2 X

π1(O)
π1(j) ,2

π1(i)
��

π1(B)

π1(ιB)
��

π1(A)
π1(ιA)

,2 π1(X)

where

§ A, B and O are	open, path-connected	subspaces	of X;

§ X = A+O B = A Y B: A and B cover X, the	square	is	a	pushout;

§ O = A ˆX B = A X B: the	square	is	a	pullback.

Then	the	square	on	the	right	is	a	pushout	in Gp.

§ Many	variations	on	this	theme	exist, in	topology,
in	algebraic	geometry	and	in	algebra.

§ Grothendieck’s	version	in [SGA1, 1971] is	based	on	descent	theory.
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A Seifert–van	Kampen	theorem	in	non-abelian	algebra
Let F : C Ñ X be	a	functor	where

§ C is	semi-abelian	algebraically	coherent	with	enough	projectives;
§ X is	(almost)	abelian;
§ F is	a	regular	epi–reflector	which
preserves	pullbacks	of	regular	epis	along	split	epis

and	consider	in C a	pushout	of	split	monomorphisms	as	on	the	left.
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Then	the	square	on	the	right	is	a	pushout	square	in X.

§ Any	reflector	from	a category	of	interest to	an	abelian	subvariety.
§ Our	proof	technique	is	new, based	on	categorical	Galois	theory,
which	is	related	to	descent—no	obvious	connection	with [SGA1].

§ This	is	a	first	step: perhaps	something	more	general	is	possible.
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The	semi-abelian	context

Category	is Noteworthy	aspects Examples

abelian
classical	homological	algebra
additive	structure	on	homsets

subobjects	are	normal
Ab, ModR, ShT (Ab)

semi-abelian	+	(LACC) internal	(co)homology Gp, XMod, LieK, HopfAlgK,coc

semi-abelian	+
algebraically	coherent

Seifert–van	Kampen
universal	central	extensions
three	subobjects	lemma

Niln(Gp), Gptf, Cat
n(Gp)

all categories	of	interest:
Rng, AlgK, LeibK

semi-abelian	+	(SH)
internal	crossed	modules

action	on	abelian	object	is	Beck	module
cohomology	via	higher	centrality

NAAlgK, Jordan	algebras,
Heyting	semilattices

semi-abelian basic	homological	algebra
internal	actions

Loop, DiGp
all varieties	of Ω-groups

§ semi-abelian =	pointed	+	Barr	exact	+ protomodular +	finite	sums

§ Internal	actions	correspond	to	split	extensions: if B acts	on X via ξ,

0 ,2 X � ,2 ,2 X ¸ξ B
f � ,2 Blr
s

lr ,2 0.

Thus	an	action	corresponds	to	a point: a	couple (f, s) with fs = 1B.
Think	of	a	point	as	a	“non-abelian	module”.

§ commutators	measure	non-abelianness ù commutator	conditions
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The	semi-abelian	context [G Janelidze, L Márki	&	W Tholen, 2002]

Category	is Noteworthy	aspects Examples

abelian
classical	homological	algebra
additive	structure	on	homsets

subobjects	are	normal
Ab, ModR, ShT (Ab)

semi-abelian	+	(LACC) internal	(co)homology Gp, XMod, LieK, HopfAlgK,coc

semi-abelian	+
algebraically	coherent

Seifert–van	Kampen
universal	central	extensions
three	subobjects	lemma

Niln(Gp), Gptf, Cat
n(Gp)

all categories	of	interest:
Rng, AlgK, LeibK

semi-abelian	+	(SH)
internal	crossed	modules

action	on	abelian	object	is	Beck	module
cohomology	via	higher	centrality

NAAlgK, Jordan	algebras,
Heyting	semilattices

semi-abelian basic	homological	algebra
internal	actions

Loop, DiGp
all varieties	of Ω-groups

§ semi-abelian =	pointed	+	Barr	exact	+ protomodular +	finite	sums

§ Internal	actions	correspond	to	split	extensions: if B acts	on X via ξ,

0 ,2 X � ,2 ,2 X ¸ξ B
f � ,2 Blr
s

lr ,2 0.

Thus	an	action	corresponds	to	a point: a	couple (f, s) with fs = 1B.
Think	of	a	point	as	a	“non-abelian	module”.

§ commutators	measure	non-abelianness ù commutator	conditions



The	semi-abelian	context [D Bourn, 1991]

Category	is Noteworthy	aspects Examples

abelian
classical	homological	algebra
additive	structure	on	homsets

subobjects	are	normal
Ab, ModR, ShT (Ab)

semi-abelian	+	(LACC) internal	(co)homology Gp, XMod, LieK, HopfAlgK,coc

semi-abelian	+
algebraically	coherent

Seifert–van	Kampen
universal	central	extensions
three	subobjects	lemma

Niln(Gp), Gptf, Cat
n(Gp)

all categories	of	interest:
Rng, AlgK, LeibK

semi-abelian	+	(SH)
internal	crossed	modules

action	on	abelian	object	is	Beck	module
cohomology	via	higher	centrality

NAAlgK, Jordan	algebras,
Heyting	semilattices

semi-abelian basic	homological	algebra
internal	actions

Loop, DiGp
all varieties	of Ω-groups

§ semi-abelian =	pointed	+	Barr	exact	+ protomodular +	finite	sums

§ Internal	actions	correspond	to	split	extensions: if B acts	on X via ξ,

0 ,2 X � ,2 ,2 X ¸ξ B
f � ,2 Blr
s

lr ,2 0.

Thus	an	action	corresponds	to	a point: a	couple (f, s) with fs = 1B.
Think	of	a	point	as	a	“non-abelian	module”.

§ commutators	measure	non-abelianness ù commutator	conditions



The	semi-abelian	context [D Bourn	&	G Janelidze, 1998]

Category	is Noteworthy	aspects Examples

abelian
classical	homological	algebra
additive	structure	on	homsets

subobjects	are	normal
Ab, ModR, ShT (Ab)

semi-abelian	+	(LACC) internal	(co)homology Gp, XMod, LieK, HopfAlgK,coc

semi-abelian	+
algebraically	coherent

Seifert–van	Kampen
universal	central	extensions
three	subobjects	lemma

Niln(Gp), Gptf, Cat
n(Gp)

all categories	of	interest:
Rng, AlgK, LeibK

semi-abelian	+	(SH)
internal	crossed	modules

action	on	abelian	object	is	Beck	module
cohomology	via	higher	centrality

NAAlgK, Jordan	algebras,
Heyting	semilattices

semi-abelian basic	homological	algebra
internal	actions

Loop, DiGp
all varieties	of Ω-groups

§ semi-abelian =	pointed	+	Barr	exact	+ protomodular +	finite	sums

§ Internal	actions	correspond	to	split	extensions: if B acts	on X via ξ,

0 ,2 X � ,2 ,2 X ¸ξ B
f � ,2 Blr
s

lr ,2 0.

Thus	an	action	corresponds	to	a point: a	couple (f, s) with fs = 1B.
Think	of	a	point	as	a	“non-abelian	module”.

§ commutators	measure	non-abelianness ù commutator	conditions



The	semi-abelian	context [N Martins–Ferreira	&	TVdL,	2012]

Category	is Noteworthy	aspects Examples

abelian
classical	homological	algebra
additive	structure	on	homsets

subobjects	are	normal
Ab, ModR, ShT (Ab)

semi-abelian	+	(LACC) internal	(co)homology Gp, XMod, LieK, HopfAlgK,coc

semi-abelian	+
algebraically	coherent

Seifert–van	Kampen
universal	central	extensions
three	subobjects	lemma

Niln(Gp), Gptf, Cat
n(Gp)

all categories	of	interest:
Rng, AlgK, LeibK

semi-abelian	+	(SH)
internal	crossed	modules

action	on	abelian	object	is	Beck	module
cohomology	via	higher	centrality

NAAlgK, Jordan	algebras,
Heyting	semilattices

semi-abelian basic	homological	algebra
internal	actions

Loop, DiGp
all varieties	of Ω-groups

§ semi-abelian =	pointed	+	Barr	exact	+ protomodular +	finite	sums

§ Internal	actions	correspond	to	split	extensions: if B acts	on X via ξ,

0 ,2 X � ,2 ,2 X ¸ξ B
f � ,2 Blr
s

lr ,2 0.

Thus	an	action	corresponds	to	a point: a	couple (f, s) with fs = 1B.
Think	of	a	point	as	a	“non-abelian	module”.

§ commutators	measure	non-abelianness ù commutator	conditions



The	semi-abelian	context [D Bourn	&	G Janelidze, 2004]

Category	is Noteworthy	aspects Examples

abelian
classical	homological	algebra
additive	structure	on	homsets

subobjects	are	normal
Ab, ModR, ShT (Ab)

semi-abelian	+	(LACC) internal	(co)homology Gp, XMod, LieK, HopfAlgK,coc

semi-abelian	+
algebraically	coherent

Seifert–van	Kampen
universal	central	extensions
three	subobjects	lemma

Niln(Gp), Gptf, Cat
n(Gp)

all categories	of	interest:
Rng, AlgK, LeibK

semi-abelian	+	(SH)
internal	crossed	modules

action	on	abelian	object	is	Beck	module
cohomology	via	higher	centrality

NAAlgK, Jordan	algebras,
Heyting	semilattices

semi-abelian basic	homological	algebra
internal	actions

Loop, DiGp
all varieties	of Ω-groups

§ semi-abelian =	pointed	+	Barr	exact	+ protomodular +	finite	sums

§ Internal	actions	correspond	to	split	extensions: if B acts	on X via ξ,

0 ,2 X � ,2 ,2 X ¸ξ B
f � ,2 Blr
s

lr ,2 0.

Thus	an	action	corresponds	to	a point: a	couple (f, s) with fs = 1B.
Think	of	a	point	as	a	“non-abelian	module”.

§ commutators	measure	non-abelianness ù commutator	conditions



The	semi-abelian	context [D Rodelo	&	TVdL,	2012, 2016]

Category	is Noteworthy	aspects Examples

abelian
classical	homological	algebra
additive	structure	on	homsets

subobjects	are	normal
Ab, ModR, ShT (Ab)

semi-abelian	+	(LACC) internal	(co)homology Gp, XMod, LieK, HopfAlgK,coc

semi-abelian	+
algebraically	coherent

Seifert–van	Kampen
universal	central	extensions
three	subobjects	lemma

Niln(Gp), Gptf, Cat
n(Gp)

all categories	of	interest:
Rng, AlgK, LeibK

semi-abelian	+	(SH)
internal	crossed	modules

action	on	abelian	object	is	Beck	module
cohomology	via	higher	centrality

NAAlgK, Jordan	algebras,
Heyting	semilattices

semi-abelian basic	homological	algebra
internal	actions

Loop, DiGp
all varieties	of Ω-groups

§ semi-abelian =	pointed	+	Barr	exact	+ protomodular +	finite	sums

§ Internal	actions	correspond	to	split	extensions: if B acts	on X via ξ,

0 ,2 X � ,2 ,2 X ¸ξ B
f � ,2 Blr
s

lr ,2 0.

Thus	an	action	corresponds	to	a point: a	couple (f, s) with fs = 1B.
Think	of	a	point	as	a	“non-abelian	module”.

§ commutators	measure	non-abelianness ù commutator	conditions



The	semi-abelian	context [JRA Gray, 2010]

Category	is Noteworthy	aspects Examples

abelian
classical	homological	algebra
additive	structure	on	homsets

subobjects	are	normal
Ab, ModR, ShT (Ab)

semi-abelian	+	(LACC) internal	(co)homology Gp, XMod, LieK, HopfAlgK,coc

semi-abelian	+
algebraically	coherent

Seifert–van	Kampen
universal	central	extensions
three	subobjects	lemma

Niln(Gp), Gptf, Cat
n(Gp)

all categories	of	interest:
Rng, AlgK, LeibK

semi-abelian	+	(SH)
internal	crossed	modules

action	on	abelian	object	is	Beck	module
cohomology	via	higher	centrality

NAAlgK, Jordan	algebras,
Heyting	semilattices

semi-abelian basic	homological	algebra
internal	actions

Loop, DiGp
all varieties	of Ω-groups

§ semi-abelian =	pointed	+	Barr	exact	+ protomodular +	finite	sums

§ Internal	actions	correspond	to	split	extensions: if B acts	on X via ξ,

0 ,2 X � ,2 ,2 X ¸ξ B
f � ,2 Blr
s

lr ,2 0.

Thus	an	action	corresponds	to	a point: a	couple (f, s) with fs = 1B.
Think	of	a	point	as	a	“non-abelian	module”.

§ commutators	measure	non-abelianness ù commutator	conditions



The	semi-abelian	context [AS Cigoli, JRA Gray	&	TVdL,	2015]

Category	is Noteworthy	aspects Examples

abelian
classical	homological	algebra
additive	structure	on	homsets

subobjects	are	normal
Ab, ModR, ShT (Ab)

semi-abelian	+	(LACC) internal	(co)homology Gp, XMod, LieK, HopfAlgK,coc

semi-abelian	+
algebraically	coherent

Seifert–van	Kampen
universal	central	extensions
three	subobjects	lemma

Niln(Gp), Gptf, Cat
n(Gp)

all categories	of	interest:
Rng, AlgK, LeibK
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internal	actions

Loop, DiGp
all varieties	of Ω-groups

§ semi-abelian =	pointed	+	Barr	exact	+ protomodular +	finite	sums

§ Internal	actions	correspond	to	split	extensions: if B acts	on X via ξ,

0 ,2 X � ,2 ,2 X ¸ξ B
f � ,2 Blr
s

lr ,2 0.

Thus	an	action	corresponds	to	a point: a	couple (f, s) with fs = 1B.
Think	of	a	point	as	a	“non-abelian	module”.

§ commutators	measure	non-abelianness ù commutator	conditions
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A Seifert–van	Kampen	theorem	in	non-abelian	algebra

Let F : C Ñ X be	a	functor	where

§ C is	semi-abelian	algebraically	coherent	with	enough	projectives;

§ X is	(almost)	abelian;

§ F is	a	regular	epi–reflector	which
preserves	pullbacks	of	regular	epis	along	split	epis

and	consider	in C a	pushout	of	split	monomorphisms	as	on	the	left.

O
j ,2

i
��

B

ιB
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lr

A
ιA
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LR

A+O Blr
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πF
1(O)

πF
1(j) ,2

πF
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��

πF
1(B)

πF
1(ιB)
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lr

πF
1(A)

πF
1(ιA)

,2

LR

πF
1(A+O B)lr

LR

Then	the	square	on	the	right	is	a	pushout	square	in X.



The	fundamental	group, I [G Janelidze	&	GM Kelly, 1994]

Categorical	Galois	theory provides	notions	such	as central	extensions
and fundamental	groups relative	to	a	suitable	adjunction F : C Ñ X.

When C is	semi-abelian	and F is	a	regular	epi–reflector	which
preserves	pullbacks	of	regular	epimorphisms	along	split	epimorphisms,
there	is	a	derived	reflection F1 : Ext(C) Ñ NExt(C).

§ NExt(C) is	the	category	of normal	extensions relative	to F.

§ If F = ab : Gp Ñ Ab, then F1 : Ext(Gp) Ñ CExt(Gp) is	the
centralisation	functor sending f : X Ñ Y to F1(f) :

X
[X,Ker(f)] Ñ Y.

The fundamental	group	functor of F is	the	right	Kan	extension πF
1 as	in

Ext(C)
F1 ,2

Cod
��

NExt(C)

Ker
��

C
πF
1

,2

ñ

X.

If C has	enough	projectives, and X is	closed	in C under	regular	quotients,
then πF

1 – L1F, the	first	simplicial	left	derived	functor	of F.
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The	fundamental	group, I [J Goedecke	&	TVdL,	2009]

Categorical	Galois	theory provides	notions	such	as central	extensions
and fundamental	groups relative	to	a	suitable	adjunction F : C Ñ X.

When C is	semi-abelian	and F is	a	regular	epi–reflector	which
preserves	pullbacks	of	regular	epimorphisms	along	split	epimorphisms,
there	is	a	derived	reflection F1 : Ext(C) Ñ NExt(C).

§ NExt(C) is	the	category	of normal	extensions relative	to F.

§ If F = ab : Gp Ñ Ab, then F1 : Ext(Gp) Ñ CExt(Gp) is	the
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then πF
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The	fundamental	group, II

Taking	the	action	of	the	centralisation	functor	as	a	definition	of	a
commutator	relative	to	the	given	adjunction, πF

1 looks	as	follows.

Let p : P Ñ A be	a	projective	cover	with	kernel K; apply F and F1.

0

��

0

��

0

��
0 ,2 πF

1(A)_��

��

� ,2 ,2 [P,P]
[P,K]_��

��

� ,2 [A,A]
_��

��

,2 0

0 ,2 K
[P,K]

_��

� ,2 ,2 P
[P,K]

_��

F1(p) � ,2 A

_��

,2 0

0 ,2 K
KX[P,P]

��

� ,2 ,2 P
[P,P]

��

F(p) � ,2 A
[A,A]

��

,2 0

0 0 0

The	Hopf	formula [T Everaert	&	TVdL,	2004] says πF
1(A) –

KX[P,P]
[P,K] .

Conclusion: πF
1(A) is	the	kernel	of	the	morphism Ker(F1(p)) Ñ F(P).
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A Seifert–van	Kampen	theorem	in	non-abelian	algebra

Let F : C Ñ X be	a	functor	where

§ C is	semi-abelian	algebraically	coherent	with	enough	projectives;

§ X is	(almost)	abelian;

§ F is	a	regular	epi–reflector	which
preserves	pullbacks	of	regular	epis	along	split	epis

and	consider	in C a	pushout	of	split	monomorphisms	as	on	the	left.
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Then	the	square	on	the	right	is	a	pushout	square	in X.



Higher	degrees?
If O = 0, then	the	result	becomes πF

1(A+ B) – πF
1(A) ‘ πF

1(B).
This	is	what [M Barr	&	J Beck, 1969] call	a homology	coproduct	theorem.

When A and B are	groups, it	is	known	that	for	all n ě 1,

Hn+1(A+ B,Z) – Hn+1(A,Z) ‘ Hn+1(B,Z),

so	is F = ab : Gp Ñ Ab, then πF
n(A+ B) – πF

n(A) ‘ πF
n(B).

Is	this	a	general	fact?

No!

[KW Johnson, 1974]

πG
2 (C2 + C2) = C2 ‘ C2 ‘ C2 fl C2 ‘ C2 = πG

2 (C2) ‘ πG
2 (C2),

for G = ab : Nil2(Gp) Ñ Ab and C2 the	cyclic	group	of	order	two.
A general	homology	coproduct	theorem	applicable	to G cannot	exist!

This	leaves	open	only	two	courses	of	investigation:

1 study	case n = 1 in	a	setting	wide	enough	to	include Nil2(Gp);

2 study	the	situation	for	general n, but	in	a	more	restricted	context
which	includes Gp and	rules	out Nil2(Gp). ù (LACC)?



Higher	degrees?
If O = 0, then	the	result	becomes πF

1(A+ B) – πF
1(A) ‘ πF

1(B).
This	is	what [M Barr	&	J Beck, 1969] call	a homology	coproduct	theorem.

When A and B are	groups, it	is	known	that	for	all n ě 1,

Hn+1(A+ B,Z) – Hn+1(A,Z) ‘ Hn+1(B,Z),

so	is F = ab : Gp Ñ Ab, then πF
n(A+ B) – πF

n(A) ‘ πF
n(B).

Is	this	a	general	fact?

No!

[KW Johnson, 1974]

πG
2 (C2 + C2) = C2 ‘ C2 ‘ C2 fl C2 ‘ C2 = πG

2 (C2) ‘ πG
2 (C2),

for G = ab : Nil2(Gp) Ñ Ab and C2 the	cyclic	group	of	order	two.
A general	homology	coproduct	theorem	applicable	to G cannot	exist!

This	leaves	open	only	two	courses	of	investigation:

1 study	case n = 1 in	a	setting	wide	enough	to	include Nil2(Gp);

2 study	the	situation	for	general n, but	in	a	more	restricted	context
which	includes Gp and	rules	out Nil2(Gp). ù (LACC)?



Higher	degrees?
If O = 0, then	the	result	becomes πF

1(A+ B) – πF
1(A) ‘ πF

1(B).
This	is	what [M Barr	&	J Beck, 1969] call	a homology	coproduct	theorem.

When A and B are	groups, it	is	known	that	for	all n ě 1,

Hn+1(A+ B,Z) – Hn+1(A,Z) ‘ Hn+1(B,Z),

so	is F = ab : Gp Ñ Ab, then πF
n(A+ B) – πF

n(A) ‘ πF
n(B).

Is	this	a	general	fact?

No!

[KW Johnson, 1974]

πG
2 (C2 + C2) = C2 ‘ C2 ‘ C2 fl C2 ‘ C2 = πG

2 (C2) ‘ πG
2 (C2),

for G = ab : Nil2(Gp) Ñ Ab and C2 the	cyclic	group	of	order	two.
A general	homology	coproduct	theorem	applicable	to G cannot	exist!

This	leaves	open	only	two	courses	of	investigation:

1 study	case n = 1 in	a	setting	wide	enough	to	include Nil2(Gp);

2 study	the	situation	for	general n, but	in	a	more	restricted	context
which	includes Gp and	rules	out Nil2(Gp). ù (LACC)?



Higher	degrees?
If O = 0, then	the	result	becomes πF

1(A+ B) – πF
1(A) ‘ πF

1(B).
This	is	what [M Barr	&	J Beck, 1969] call	a homology	coproduct	theorem.

When A and B are	groups, it	is	known	that	for	all n ě 1,

Hn+1(A+ B,Z) – Hn+1(A,Z) ‘ Hn+1(B,Z),

so	is F = ab : Gp Ñ Ab, then πF
n(A+ B) – πF

n(A) ‘ πF
n(B).

Is	this	a	general	fact?

No!

[KW Johnson, 1974]

πG
2 (C2 + C2) = C2 ‘ C2 ‘ C2 fl C2 ‘ C2 = πG

2 (C2) ‘ πG
2 (C2),

for G = ab : Nil2(Gp) Ñ Ab and C2 the	cyclic	group	of	order	two.
A general	homology	coproduct	theorem	applicable	to G cannot	exist!

This	leaves	open	only	two	courses	of	investigation:

1 study	case n = 1 in	a	setting	wide	enough	to	include Nil2(Gp);

2 study	the	situation	for	general n, but	in	a	more	restricted	context
which	includes Gp and	rules	out Nil2(Gp). ù (LACC)?



Higher	degrees?
If O = 0, then	the	result	becomes πF

1(A+ B) – πF
1(A) ‘ πF

1(B).
This	is	what [M Barr	&	J Beck, 1969] call	a homology	coproduct	theorem.

When A and B are	groups, it	is	known	that	for	all n ě 1,

Hn+1(A+ B,Z) – Hn+1(A,Z) ‘ Hn+1(B,Z),

so	is F = ab : Gp Ñ Ab, then πF
n(A+ B) – πF

n(A) ‘ πF
n(B).

Is	this	a	general	fact? No! [KW Johnson, 1974]

πG
2 (C2 + C2) = C2 ‘ C2 ‘ C2 fl C2 ‘ C2 = πG

2 (C2) ‘ πG
2 (C2),

for G = ab : Nil2(Gp) Ñ Ab and C2 the	cyclic	group	of	order	two.
A general	homology	coproduct	theorem	applicable	to G cannot	exist!

This	leaves	open	only	two	courses	of	investigation:

1 study	case n = 1 in	a	setting	wide	enough	to	include Nil2(Gp);

2 study	the	situation	for	general n, but	in	a	more	restricted	context
which	includes Gp and	rules	out Nil2(Gp). ù (LACC)?



Higher	degrees?
If O = 0, then	the	result	becomes πF

1(A+ B) – πF
1(A) ‘ πF

1(B).
This	is	what [M Barr	&	J Beck, 1969] call	a homology	coproduct	theorem.

When A and B are	groups, it	is	known	that	for	all n ě 1,

Hn+1(A+ B,Z) – Hn+1(A,Z) ‘ Hn+1(B,Z),

so	is F = ab : Gp Ñ Ab, then πF
n(A+ B) – πF

n(A) ‘ πF
n(B).

Is	this	a	general	fact? No! [KW Johnson, 1974]

πG
2 (C2 + C2) = C2 ‘ C2 ‘ C2 fl C2 ‘ C2 = πG

2 (C2) ‘ πG
2 (C2),

for G = ab : Nil2(Gp) Ñ Ab and C2 the	cyclic	group	of	order	two.
A general	homology	coproduct	theorem	applicable	to G cannot	exist!

This	leaves	open	only	two	courses	of	investigation:

1 study	case n = 1 in	a	setting	wide	enough	to	include Nil2(Gp);

2 study	the	situation	for	general n, but	in	a	more	restricted	context
which	includes Gp and	rules	out Nil2(Gp). ù (LACC)?



Higher	degrees?
If O = 0, then	the	result	becomes πF

1(A+ B) – πF
1(A) ‘ πF

1(B).
This	is	what [M Barr	&	J Beck, 1969] call	a homology	coproduct	theorem.

When A and B are	groups, it	is	known	that	for	all n ě 1,

Hn+1(A+ B,Z) – Hn+1(A,Z) ‘ Hn+1(B,Z),

so	is F = ab : Gp Ñ Ab, then πF
n(A+ B) – πF

n(A) ‘ πF
n(B).

Is	this	a	general	fact? No! [KW Johnson, 1974]

πG
2 (C2 + C2) = C2 ‘ C2 ‘ C2 fl C2 ‘ C2 = πG

2 (C2) ‘ πG
2 (C2),

for G = ab : Nil2(Gp) Ñ Ab and C2 the	cyclic	group	of	order	two.
A general	homology	coproduct	theorem	applicable	to G cannot	exist!

This	leaves	open	only	two	courses	of	investigation:

1 study	case n = 1 in	a	setting	wide	enough	to	include Nil2(Gp);

2 study	the	situation	for	general n, but	in	a	more	restricted	context
which	includes Gp and	rules	out Nil2(Gp). ù (LACC)?
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The	semi-abelian	context

Category	is Noteworthy	aspects Examples

abelian
classical	homological	algebra
additive	structure	on	homsets

subobjects	are	normal
Ab, ModR, ShT (Ab)

semi-abelian	+	(LACC) internal	(co)homology Gp, XMod, LieK, HopfAlgK,coc

semi-abelian	+
algebraically	coherent

Seifert–van	Kampen
universal	central	extensions
three	subobjects	lemma

Niln(Gp), Gptf, Cat
n(Gp)

all categories	of	interest:
Rng, AlgK, LeibK

semi-abelian	+	(SH)
internal	crossed	modules

action	on	abelian	object	is	Beck	module
cohomology	via	higher	centrality

NAAlgK, Jordan	algebras,
Heyting	semilattices

semi-abelian basic	homological	algebra
internal	actions

Loop, DiGp
all varieties	of Ω-groups

§ semi-abelian =	pointed	+	Barr	exact	+ protomodular +	finite	sums

§ Internal	actions	correspond	to	split	extensions: if B acts	on X via ξ,

0 ,2 X � ,2 ,2 X ¸ξ B
f � ,2 Blr
s

lr ,2 0.

Thus	an	action	corresponds	to	a point: a	couple (f, s) with fs = 1B.
Think	of	a	point	as	a	“non-abelian	module”.

§ commutators	measure	non-abelianness ù commutator	conditions



Algebraic	coherence [AS Cigoli, JRA Gray	&	TVdL,	2015]

Internal	actions	correspond	to	split	extensions: for B acting	on X via ξ,

0 ,2 X � ,2 ,2 X ¸ξ B
f � ,2 Blr
s

lr ,2 0.

Thus	an	action	corresponds	to	a point: a	couple (f, s) with fs = 1B.

When	the	underlying	object	of	a	sum	of B-actions (X, ξ) + (Y, υ)
is	the	sum X+ Y, this	means	that	the	category C is (LACC).

When	the	canonical	comparison X+ Y Ñ K((X, ξ) + (Y, υ))
is	merely	a	regular	epimorphism	(instead	of	an	isomorphism),
then	the	category C is algebraically	coherent.

Thus, algebraic	coherence	means	that	the	change-of-base	functors	in
the	fibration	of	points	preserve	jointly	strongly	epimorphic	pairs:
if (X, ξ) and (Y, υ) cover (Z, ζ) in ActB(C), then X and Y cover Z in C.

This	technical	condition	has	strong	categorical-algebraic	consequences,
while	(in	contrast	with	(LACC)) many	semi-abelian	categories	satisfy	it.
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A Seifert–van	Kampen	theorem	in	non-abelian	algebra

Let F : C Ñ X be	a	functor	where

§ C is	semi-abelian	algebraically	coherent	with	enough	projectives;

§ X is	(almost)	abelian;

§ F is	a	regular	epi–reflector	which
preserves	pullbacks	of	regular	epis	along	split	epis

and	consider	in C a	pushout	of	split	monomorphisms	as	on	the	left.

O
j ,2

i
��

B

ιB

��

lr

A
ιA

,2

LR

A+O Blr

LR
πF
1(O)

πF
1(j) ,2

πF
1(i)

��

πF
1(B)

πF
1(ιB)

��

lr

πF
1(A)

πF
1(ιA)

,2

LR

πF
1(A+O B)lr

LR

Then	the	square	on	the	right	is	a	pushout	square	in X.



A glance	at	the	proof	of πF
1(A+ B) – πF

1(A) ‘ πF
1(B)

We	take	projective	presentations:

P ,2

p

��

P+Q ,2lr

p+q
��

Qlr

q

��
A ,2 A+ B ,2lr Blr

Since πF
1(A) is	the	kernel	of Ker(F1(p)) Ñ F(P), we	consider

0

��

0

��

0

��
πF
1(A)

,2

��

πF
1(A+ B) ,2lr

��

πF
1(B)lr

��
Ker(F1(p))

,2

��

Ker(F1(p+ q))lr ,2

��

Ker(F1(q))lr

��
0 ,2 F(P) ,2 F(P+Q)lr ,2 F(Q)lr ,2 0

We	want	a	biproduct	in	the	top	row. The	bottom	row	is	a	biproduct.
We	only	need	to	prove	that	the	second	row	is	a	biproduct:
this	follows	from	algebraic	coherence.
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A glance	at	the	proof	of πF
1(A+ B) – πF

1(A) ‘ πF
1(B)

The	diagram

Ker(F1(p))
,2 Ker(F1(p+ q))lr ,2 Ker(F1(q))lr

is	a	biproduct	by	the	next	result.

Proposition

In	an algebraically	coherent semi-abelian	category, consider:

0 ,2 K1

κ

��

� ,2 ,2 Z

z

��

� ,2 T

t
��

lr ,2 0

0 ,2 K � ,2 k ,2 X
f � ,2 Y
s

lr ,2 0

0 ,2 K2

κ1

LR

� ,2 ,2 Z1

z1

LR

� ,2 T1

t1

LR

lr ,2 0

If f is	a	normal	extension, κ and κ1 are	split	monomorphisms	and (z, z1)
is	jointly	strongly	epimorphic, then (κ, κ1) is	jointly	strongly	epimorphic.

§ This	argument	doesn’t	this	extend	to	higher	degrees.
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Conclusion

Theorem
For F any	reflector	from	a	semi-abelian	algebraically	coherent	variety
to	an	abelian	subvariety, its	first	left	derived	functor L1F
preserves	pushouts	of	split	monomorphisms.

§ Main	point	for	me: role	of	categorical-algebraic	conditions
such	as algebraic	coherence.

This	ingredient	is	missing	in, for	instance, [M Barr	&	J Beck, 1969].

§ Concrete	applications?

§ What	is	the	right	context	for	a	higher-order	result?

§ Beyond	split	monomorphisms?
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Thank	you!


