Tim Van der Linden joint work with Mathieu Duckerts-Antoine

> Fonds de la Recherche Scientifique-FNRS Université catholique de Louvain

100th Peripatetic Seminar on Sheaves and Logic 22nd of May 2016 | Cambridge

- Concrete aim: understanding (co)homology of groups
- Which aspects of group cohomology are typical for groups, and which function for purely formal reasons, so that a categorical argument suffices to understand and apply these in other settings?
- Conversely, what do our "homological needs" tell us about categories of non-abelian algebraic structures?

Concrete aim: understanding (co)homology of groups

- Which aspects of group cohomology are typical for groups, and which function for purely formal reasons, so that a categorical argument suffices to understand and apply these in other settings?
- Conversely, what do our "homological needs" tell us about categories of non-abelian algebraic structures?

- Concrete aim: understanding (co)homology of groups
- Which aspects of group cohomology are typical for groups, and which function for purely formal reasons, so that a categorical argument suffices to understand and apply these in other settings?
- Conversely, what do our "homological needs" tell us about categories of non-abelian algebraic structures?

- Concrete aim: understanding (co)homology of groups
- Which aspects of group cohomology are typical for groups, and which function for purely formal reasons, so that a categorical argument suffices to understand and apply these in other settings?
- Conversely, what do our "homological needs" tell us about categories of non-abelian algebraic structures?

- Concrete aim: understanding (co)homology of groups
- Which aspects of group cohomology are typical for groups, and which function for purely formal reasons, so that a categorical argument suffices to understand and apply these in other settings?
- Conversely, what do our "homological needs" tell us about categories of non-abelian algebraic structures?

The classical Seifert–van Kampen theorem

[1931, 1933]

Consider a square of pointed topological spaces as on the left,

where

- *A*, *B* and *O* are open, path-connected subspaces of *X*;
- $X = A +_O B = A \cup B$: A and B cover X, the square is a pushout;
- $O = A \times_X B = A \cap B$: the square is a pullback.

Then the square on the right is a pushout in Gp.

- Many variations on this theme exist, in topology, in algebraic geometry and in algebra.
- Grothendieck's version in [SGA1, 1971] is based on descent theory.

The classical Seifert–van Kampen theorem

[1931, 1933]

Consider a square of pointed topological spaces as on the left,

where

- *A*, *B* and *O* are open, path-connected subspaces of *X*;
- $X = A +_O B = A \cup B$: A and B cover X, the square is a pushout;
- $O = A \times_X B = A \cap B$: the square is a pullback.

Then the square on the right is a pushout in Gp.

- Many variations on this theme exist, in topology, in algebraic geometry and in algebra.
- Grothendieck's version in [SGA1, 1971] is based on descent theory.

The classical Seifert–van Kampen theorem

[1931, 1933]

Consider a square of pointed topological spaces as on the left,

where

- *A*, *B* and *O* are open, path-connected subspaces of *X*;
- $X = A +_O B = A \cup B$: A and B cover X, the square is a pushout;
- $O = A \times_X B = A \cap B$: the square is a pullback.

Then the square on the right is a pushout in Gp.

- Many variations on this theme exist, in topology, in algebraic geometry and in algebra.
- Grothendieck's version in [SGA1, 1971] is based on descent theory.

Let $F \colon \mathbb{C} \to \mathbb{X}$ be a functor where

- ${\scriptstyle \blacktriangleright}\ {\Bbb C}$ is semi-abelian algebraically coherent with enough projectives;
- ▶ X is (almost) abelian;
- ► *F* is a regular epi–reflector which

preserves pullbacks of regular epis along split epis

and consider in $\ensuremath{\mathbb{C}}$ a pushout of split monomorphisms as on the left.

- Any reflector from a category of interest to an abelian subvariety.
- Our proof technique is new, based on categorical Galois theory, which is related to descent—no obvious connection with [SGA1].
- > This is a first step: perhaps something more general is possible.

Let $F \colon \mathbb{C} \to \mathbb{X}$ be a functor where

- ${\scriptstyle \blacktriangleright}\ {\mathbb C}$ is semi-abelian algebraically coherent with enough projectives;
- ▶ X is (almost) abelian;
- ► *F* is a regular epi–reflector which

preserves pullbacks of regular epis along split epis

and consider in $\ensuremath{\mathbb{C}}$ a pushout of split monomorphisms as on the left.

- Any reflector from a *category of interest* to an abelian subvariety.
- Our proof technique is new, based on categorical Galois theory, which is related to descent—no obvious connection with [SGA1].
- This is a first step: perhaps something more general is possible.

Let $F \colon \mathbb{C} \to \mathbb{X}$ be a functor where

- ${\scriptstyle \blacktriangleright}\ {\Bbb C}$ is semi-abelian algebraically coherent with enough projectives;
- ▶ X is (almost) abelian;
- ► *F* is a regular epi–reflector which

preserves pullbacks of regular epis along split epis

and consider in $\ensuremath{\mathbb{C}}$ a pushout of split monomorphisms as on the left.

- Any reflector from a category of interest to an abelian subvariety.
- Our proof technique is new, based on categorical Galois theory, which is related to descent—no obvious connection with [SGA1].
- This is a first step: perhaps something more general is possible.

Let $F \colon \mathbb{C} \to \mathbb{X}$ be a functor where

- ${\scriptstyle \blacktriangleright}\ {\mathbb C}$ is semi-abelian algebraically coherent with enough projectives;
- ▶ X is (almost) abelian;
- ► *F* is a regular epi–reflector which

preserves pullbacks of regular epis along split epis

and consider in $\ensuremath{\mathbb{C}}$ a pushout of split monomorphisms as on the left.

- Any reflector from a *category of interest* to an abelian subvariety.
- Our proof technique is new, based on categorical Galois theory, which is related to descent—no obvious connection with [SGA1].
- This is a first step: perhaps something more general is possible.

Let $F \colon \mathbb{C} \to \mathbb{X}$ be a functor where

- ${\scriptstyle \blacktriangleright}\ {\Bbb C}$ is semi-abelian algebraically coherent with enough projectives;
- ▶ X is (almost) abelian;
- ► *F* is a regular epi–reflector which

preserves pullbacks of regular epis along split epis

and consider in $\ensuremath{\mathbb{C}}$ a pushout of split monomorphisms as on the left.

- Any reflector from a category of interest to an abelian subvariety.
- Our proof technique is new, based on categorical Galois theory, which is related to descent—no obvious connection with [SGA1].
- This is a first step: perhaps something more general is possible.

Category is	Noteworthy aspects	Examples
abelian	classical homological algebra additive structure on homsets subobjects are normal	Ab, $\operatorname{Mod}_{\mathcal{R}}$, $\operatorname{Sh}_{\mathscr{T}}(\operatorname{Ab})$
semi-abelian + (LACC)	internal (co)homology	Gp, XMod, Lie _{<i>K</i>} , HopfAlg _{<i>K</i>,coc}
semi-abelian + algebraically coherent	Seifert-van Kampen universal central extensions three subobjects lemma	Nil _n (Gp), Gp _{tí} , Cat ⁿ (Gp) all <i>categories of interest</i> : Rng, Alg _K , Leib _K
semi-abelian + (SH)	internal crossed modules action on abelian object is Beck module cohomology via higher centrality	NAAlg _K , Jordan algebras, Heyting semilattices
semi-abelian	basic homological algebra internal actions	Loop, DiGp all varieties of Ω -groups

semi-abelian = pointed + Barr exact + protomodular + finite sums

Internal actions correspond to split extensions: if *B* acts on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xrightarrow{f} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$. Think of a point as a "non-abelian module".

Category is	Noteworthy aspects	Examples
abelian	classical homological algebra additive structure on homsets subobjects are normal	Ab, $\operatorname{Mod}_{\mathcal{R}}$, $\operatorname{Sh}_{\mathscr{T}}(\operatorname{Ab})$
semi-abelian + (LACC)	internal (co)homology	Gp, XMod, Lie _{<i>K</i>} , HopfAlg _{<i>K</i>,coc}
semi-abelian + algebraically coherent	Seifert-van Kampen universal central extensions three subobjects lemma	Nil _n (Gp), Gp _{tí} , Cat ⁿ (Gp) all <i>categories of interest</i> : Rng, Alg _K , Leib _K
semi-abelian + (SH)	internal crossed modules action on abelian object is Beck module cohomology via higher centrality	NAAlg _K , Jordan algebras, Heyting semilattices
semi-abelian	basic homological algebra internal actions	Loop, DiGp all varieties of Ω -groups

semi-abelian = pointed + Barr exact + protomodular + finite sums

Internal actions correspond to split extensions: if *B* acts on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xrightarrow{f} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$. Think of a point as a "non-abelian module".

Category is	Noteworthy aspects	Examples
abelian	classical homological algebra additive structure on homsets subobjects are normal	Ab, Mod_R , $Sh_{\mathscr{T}}(Ab)$
semi-abelian + (LACC)	internal (co)homology	Gp, XMod, Lie _K , HopfAlg _{K,coc}
semi-abelian + algebraically coherent	Seifert-van Kampen universal central extensions three subobjects lemma	Nil _n (Gp), Gp _{tí} , Cat ⁿ (Gp) all <i>categories of interest</i> : Rng, Alg _K , Leib _K
semi-abelian + (SH)	internal crossed modules action on abelian object is Beck module cohomology via higher centrality	NAAlg _K , Jordan algebras, Heyting semilattices
semi-abelian	basic homological algebra internal actions	Loop, DiGp all varieties of Ω -groups

semi-abelian = pointed + Barr exact + protomodular + finite sums

• Internal actions correspond to split extensions: if *B* acts on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xrightarrow{f} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$. Think of a point as a "non-abelian module".

Category is	Noteworthy aspects	Examples
abelian	classical homological algebra additive structure on homsets subobjects are normal	Ab, $\operatorname{Mod}_{\mathcal{R}}$, $\operatorname{Sh}_{\mathscr{T}}(\operatorname{Ab})$
semi-abelian + (LACC)	internal (co)homology	Gp, XMod, Lie _{<i>K</i>} , HopfAlg _{<i>K</i>,coc}
semi-abelian + algebraically coherent	Seifert-van Kampen universal central extensions three subobjects lemma	Nil _n (Gp), Gp _{tí} , Cat ⁿ (Gp) all <i>categories of interest:</i> Rng, Alg _K , Leib _K
semi-abelian + (SH)	internal crossed modules action on abelian object is Beck module cohomology via higher centrality	NAAlg _K , Jordan algebras, Heyting semilattices
semi-abelian	basic homological algebra internal actions	Loop, DiGp all varieties of Ω -groups

semi-abelian = pointed + Barr exact + protomodular + finite sums

• Internal actions correspond to split extensions: if *B* acts on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xrightarrow{f} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$. Think of a point as a "non-abelian module".

Category is	Noteworthy aspects	Examples
abelian	classical homological algebra additive structure on homsets subobjects are normal	Ab, Mod_{R} , $\operatorname{Sh}_{\mathscr{T}}(\operatorname{Ab})$
semi-abelian + (LACC)	internal (co)homology	Gp, XMod, Lie _K , HopfAlg _{K,coc}
semi-abelian + algebraically coherent	Seifert-van Kampen universal central extensions three subobjects lemma	Nil _n (Gp), Gp _{tí} , Cat ⁿ (Gp) all <i>categories of interest</i> : Rng, Alg _K , Leib _K
semi-abelian + (SH)	internal crossed modules action on abelian object is Beck module cohomology via higher centrality	NAAlg _K , Jordan algebras, Heyting semilattices
semi-abelian	basic homological algebra internal actions	Loop, DiGp all varieties of Ω -groups

- semi-abelian = pointed + Barr exact + protomodular + finite sums
- Internal actions correspond to split extensions: if *B* acts on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xleftarrow{f} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$. Think of a point as a "non-abelian module".

Category is	Noteworthy aspects	Examples
abelian	classical homological algebra additive structure on homsets subobjects are normal	Ab, Mod_{R} , $\operatorname{Sh}_{\mathscr{T}}(\operatorname{Ab})$
semi-abelian + (LACC)	internal (co)homology	Gp, XMod, Lie _K , HopfAlg _{K,coc}
semi-abelian + algebraically coherent	Seifert-van Kampen universal central extensions three subobjects lemma	Nil _n (Gp), Gp _{tí} , Cat ⁿ (Gp) all <i>categories of interest</i> : Rng, Alg _K , Leib _K
semi-abelian + (SH)	internal crossed modules action on abelian object is Beck module cohomology via higher centrality	NAAlg _K , Jordan algebras, Heyting semilattices
semi-abelian	basic homological algebra internal actions	Loop, DiGp all varieties of Ω -groups

- semi-abelian = pointed + Barr exact + protomodular + finite sums
- Internal actions correspond to split extensions: if *B* acts on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xleftarrow{f} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$. Think of a point as a "non-abelian module".

Category is	Noteworthy aspects	Examples
abelian	classical homological algebra additive structure on homsets subobjects are normal	Ab, $\operatorname{Mod}_{\mathcal{R}}$, $\operatorname{Sh}_{\mathscr{T}}(\operatorname{Ab})$
semi-abelian + (LACC)	internal (co)homology	Gp, XMod, Lie _K , HopfAlg _{K,coc}
semi-abelian + algebraically coherent	Seifert-van Kampen universal central extensions three subobjects lemma	Nil _n (Gp), Gp _{tf} , Cat ⁿ (Gp) all <i>categories of interest</i> : Rng, Alg _K , Leib _K
semi-abelian + (SH)	internal crossed modules action on abelian object is Beck module cohomology via higher centrality	NAAlg _k , Jordan algebras, Heyting semilattices
semi-abelian	basic homological algebra internal actions	Loop, DiGp all varieties of Ω -groups

- semi-abelian = pointed + Barr exact + protomodular + finite sums
- Internal actions correspond to split extensions: if *B* acts on *X* via ξ ,

$$0 \longrightarrow X \bowtie X \rtimes_{\xi} B \xleftarrow{f}{\longleftrightarrow} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$. Think of a point as a "non-abelian module".

Category is	Noteworthy aspects	Examples
abelian	classical homological algebra additive structure on homsets subobjects are normal	Ab, Mod_{R} , $\operatorname{Sh}_{\mathscr{T}}(\operatorname{Ab})$
semi-abelian + (LACC)	internal (co)homology	Gp, XMod, Lie _K , HopfAlg _{K,coc}
semi-abelian + algebraically coherent	Seifert-van Kampen universal central extensions three subobjects lemma	Nil _n (Gp), Gp _{tí} , Cat ⁿ (Gp) all <i>categories of interest</i> : Rng, Alg _K , Leib _K
semi-abelian + (SH)	internal crossed modules action on abelian object is Beck module cohomology via higher centrality	NAAlg _K , Jordan algebras, Heyting semilattices
semi-abelian	basic homological algebra internal actions	Loop, DiGp all varieties of Ω -groups

- semi-abelian = pointed + Barr exact + protomodular + finite sums
- Internal actions correspond to split extensions: if *B* acts on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xrightarrow{f} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$. Think of a point as a "non-abelian module".

Category is	Noteworthy aspects	Examples
abelian	classical homological algebra additive structure on homsets subobjects are normal	Ab, Mod_R , $Sh_{\mathscr{T}}(Ab)$
semi-abelian + (LACC)	internal (co)homology	Gp, XMod, Lie _K , HopfAlg _{K,coc}
semi-abelian + algebraically coherent	Seifert-van Kampen universal central extensions three subobjects lemma	Nil _n (Gp), Gp _{tf} , Cat ⁿ (Gp) all <i>categories of interest</i> : Rng, Alg _K , Leib _K
semi-abelian + (SH)	internal crossed modules action on abelian object is Beck module cohomology via higher centrality	NAAlg _K , Jordan algebras, Heyting semilattices
semi-abelian	basic homological algebra internal actions	Loop, DiGp all varieties of Ω -groups

- semi-abelian = pointed + Barr exact + protomodular + finite sums
- Internal actions correspond to split extensions: if *B* acts on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xleftarrow{f} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$. Think of a point as a "non-abelian module".

Category is	Noteworthy aspects	Examples
abelian	classical homological algebra additive structure on homsets subobjects are normal	Ab, Mod_{R} , $\operatorname{Sh}_{\mathscr{T}}(\operatorname{Ab})$
semi-abelian + (LACC)	internal (co)homology	Gp, XMod, Lie _K , HopfAlg _{K,coc}
semi-abelian + algebraically coherent	Seifert-van Kampen universal central extensions three subobjects lemma	Nil _n (Gp), Gp _{tí} , Cat ⁿ (Gp) all <i>categories of interest</i> : Rng, Alg _K , Leib _K
semi-abelian + (SH)	internal crossed modules action on abelian object is Beck module cohomology via higher centrality	NAAlg _K , Jordan algebras, Heyting semilattices
semi-abelian	basic homological algebra internal actions	Loop, DiGp all varieties of Ω -groups

- semi-abelian = pointed + Barr exact + protomodular + finite sums
- Internal actions correspond to split extensions: if *B* acts on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xleftarrow{f}{\longleftrightarrow} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$. Think of a point as a "non-abelian module".

Category is	Noteworthy aspects	Examples
abelian	classical homological algebra additive structure on homsets subobjects are normal	Ab, $\operatorname{Mod}_{\mathcal{R}}$, $\operatorname{Sh}_{\mathscr{T}}(\operatorname{Ab})$
semi-abelian + (LACC)	internal (co)homology	Gp, XMod, Lie _{<i>K</i>} , HopfAlg _{<i>K</i>,coc}
semi-abelian + algebraically coherent	Seifert-van Kampen universal central extensions three subobjects lemma	Nil _n (Gp), Gp _{tí} , Cat ⁿ (Gp) all <i>categories of interest</i> : Rng, Alg _K , Leib _K
semi-abelian + (SH)	internal crossed modules action on abelian object is Beck module cohomology via higher centrality	NAAlg _K , Jordan algebras, Heyting semilattices
semi-abelian	basic homological algebra internal actions	Loop, DiGp all varieties of Ω -groups

- semi-abelian = pointed + Barr exact + protomodular + finite sums
- Internal actions correspond to split extensions: if *B* acts on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xleftarrow{f}{\longleftrightarrow} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$. Think of a point as a "non-abelian module".

Let $F \colon \mathbb{C} \to \mathbb{X}$ be a functor where

- \blacktriangleright $\mathbb C$ is semi-abelian algebraically coherent with enough projectives;
- X is (almost) abelian;
- *F* is a regular epi–reflector which preserves pullbacks of regular epis along split epis

and consider in $\mathbb C$ a pushout of split monomorphisms as on the left.

[G Janelidze & GM Kelly, 1994]

Categorical Galois theory provides notions such as central extensions and fundamental groups relative to a suitable adjunction $F: \mathbb{C} \to \mathbb{X}$.

When \mathbb{C} is semi-abelian and F is a regular epi–reflector which preserves pullbacks of regular epimorphisms along split epimorphisms, there is a derived reflection F_1 : $Ext(\mathbb{C}) \rightarrow NExt(\mathbb{C})$.

- ▶ NExt(ℂ) is the category of **normal extensions** relative to *F*.
- ▶ If F = ab: Gp → Ab, then F_1 : Ext(Gp) → CExt(Gp) is the **centralisation functor** sending $f: X \to Y$ to $F_1(f): \frac{X}{[X, \text{Ker}(f)]} \to Y$.

The **fundamental group functor** of *F* is the right Kan extension π_1^F as in

$$\begin{array}{c|c} \operatorname{Ext}(\mathbb{C}) & \xrightarrow{F_1} & \operatorname{NExt}(\mathbb{C}) \\ & & & & & \\ \operatorname{Cod} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

Categorical Galois theory provides notions such as central extensions and fundamental groups relative to a suitable adjunction $F: \mathbb{C} \to \mathbb{X}$.

When \mathbb{C} is semi-abelian and F is a regular epi–reflector which preserves pullbacks of regular epimorphisms along split epimorphisms, there is a derived reflection $F_1: \operatorname{Ext}(\mathbb{C}) \to \operatorname{NExt}(\mathbb{C})$.

▶ NExt(ℂ) is the category of **normal extensions** relative to *F*.

▶ If F = ab: Gp → Ab, then F_1 : Ext(Gp) → CExt(Gp) is the **centralisation functor** sending $f: X \to Y$ to $F_1(f): \frac{X}{[X, \text{Ker}(f)]} \to Y$.

The **fundamental group functor** of *F* is the right Kan extension π_1^F as in

$$\begin{array}{c|c} \operatorname{Ext}(\mathbb{C}) & \xrightarrow{F_1} & \operatorname{NExt}(\mathbb{C}) \\ & & & & & \\ \operatorname{Cod} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Categorical Galois theory provides notions such as central extensions and fundamental groups relative to a suitable adjunction $F: \mathbb{C} \to \mathbb{X}$.

When \mathbb{C} is semi-abelian and F is a regular epi–reflector which preserves pullbacks of regular epimorphisms along split epimorphisms, there is a derived reflection $F_1: \operatorname{Ext}(\mathbb{C}) \to \operatorname{NExt}(\mathbb{C})$.

- ▶ NExt(ℂ) is the category of **normal extensions** relative to *F*.
- ▶ If F = ab: Gp → Ab, then F_1 : Ext(Gp) → CExt(Gp) is the **centralisation functor** sending $f: X \to Y$ to $F_1(f): \frac{X}{[X, Ker(f)]} \to Y$.

The **fundamental group functor** of *F* is the right Kan extension π_1^F as in

$$\begin{array}{c|c} \operatorname{Ext}(\mathbb{C}) & \xrightarrow{F_1} & \operatorname{NExt}(\mathbb{C}) \\
\end{array} \\
\begin{array}{c} \operatorname{Cod} & \swarrow & \bigvee \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & &$$

Categorical Galois theory provides notions such as central extensions and fundamental groups relative to a suitable adjunction $F: \mathbb{C} \to \mathbb{X}$.

When \mathbb{C} is semi-abelian and F is a regular epi–reflector which preserves pullbacks of regular epimorphisms along split epimorphisms, there is a derived reflection $F_1: \operatorname{Ext}(\mathbb{C}) \to \operatorname{NExt}(\mathbb{C})$.

- ▶ NExt(ℂ) is the category of **normal extensions** relative to *F*.
- ► If F = ab: Gp \rightarrow Ab, then F_1 : Ext(Gp) \rightarrow CExt(Gp) is the **centralisation functor** sending $f: X \rightarrow Y$ to $F_1(f): \frac{X}{[X, \text{Ker}(f)]} \rightarrow Y$.

The **fundamental group functor** of *F* is the right Kan extension π_1^F as in

$$\begin{array}{c|c} \operatorname{Ext}(\mathbb{C}) & \xrightarrow{F_1} & \operatorname{NExt}(\mathbb{C}) \\ & & & & & \\ \operatorname{Cod} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Categorical Galois theory provides notions such as central extensions and fundamental groups relative to a suitable adjunction $F: \mathbb{C} \to \mathbb{X}$.

When \mathbb{C} is semi-abelian and F is a regular epi–reflector which preserves pullbacks of regular epimorphisms along split epimorphisms, there is a derived reflection $F_1: \operatorname{Ext}(\mathbb{C}) \to \operatorname{NExt}(\mathbb{C})$.

- ▶ NExt(ℂ) is the category of **normal extensions** relative to *F*.
- ► If F = ab: Gp \rightarrow Ab, then F_1 : Ext(Gp) \rightarrow CExt(Gp) is the **centralisation functor** sending $f: X \rightarrow Y$ to $F_1(f): \frac{X}{[X, \text{Ker}(f)]} \rightarrow Y$.

The **fundamental group functor** of *F* is the right Kan extension π_1^F as in

$$\begin{array}{c|c} \operatorname{Ext}(\mathbb{C}) & \xrightarrow{F_1} & \operatorname{NExt}(\mathbb{C}) \\ & & \swarrow & & & & \\ \operatorname{Cod} & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Categorical Galois theory provides notions such as central extensions and fundamental groups relative to a suitable adjunction $F: \mathbb{C} \to \mathbb{X}$.

When \mathbb{C} is semi-abelian and F is a regular epi–reflector which preserves pullbacks of regular epimorphisms along split epimorphisms, there is a derived reflection $F_1: \operatorname{Ext}(\mathbb{C}) \to \operatorname{NExt}(\mathbb{C})$.

- $NExt(\mathbb{C})$ is the category of **normal extensions** relative to *F*.
- ► If F = ab: Gp \rightarrow Ab, then F_1 : Ext(Gp) \rightarrow CExt(Gp) is the **centralisation functor** sending $f: X \rightarrow Y$ to $F_1(f): \frac{X}{[X, \text{Ker}(f)]} \rightarrow Y$.

The **fundamental group functor** of *F* is the right Kan extension π_1^F as in

Categorical Galois theory provides notions such as central extensions and fundamental groups relative to a suitable adjunction $F: \mathbb{C} \to \mathbb{X}$.

When \mathbb{C} is semi-abelian and F is a regular epi–reflector which preserves pullbacks of regular epimorphisms along split epimorphisms, there is a derived reflection $F_1: \operatorname{Ext}(\mathbb{C}) \to \operatorname{NExt}(\mathbb{C})$.

- ▶ NExt(ℂ) is the category of **normal extensions** relative to *F*.
- ► If F = ab: Gp \rightarrow Ab, then F_1 : Ext(Gp) \rightarrow CExt(Gp) is the **centralisation functor** sending $f: X \rightarrow Y$ to $F_1(f): \frac{X}{[X, \text{Ker}(f)]} \rightarrow Y$.

The **fundamental group functor** of *F* is the right Kan extension π_1^F as in

Taking the action of the centralisation functor as a definition of a commutator relative to the given adjunction, π_1^F looks as follows.

Let $p: P \to A$ be a projective cover with kernel *K*; apply *F* and *F*₁.

The Hopf formula [T Everaert & TVdL, 2004] says $\pi_1^F(A) \cong \frac{K \cap [P,P]}{[P,K]}$. Conclusion: $\pi_1^F(A)$ is the kernel of the morphism $\text{Ker}(F_1(p)) \to F(P)$.

Taking the action of the centralisation functor as a definition of a commutator relative to the given adjunction, π_1^F looks as follows. Let $p: P \rightarrow A$ be a projective cover with kernel *K*; apply *F* and *F*₁.

The Hopf formula [T Everaert & TVdL, 2004] says $\pi_1^F(A) \cong \frac{K \cap [P,P]}{[P,K]}$. Conclusion: $\pi_1^F(A)$ is the kernel of the morphism $\text{Ker}(F_1(p)) \to F(P)$.

Taking the action of the centralisation functor as a definition of a commutator relative to the given adjunction, π_1^F looks as follows. Let $p: P \rightarrow A$ be a projective cover with kernel *K*; apply *F* and *F*₁.

The Hopf formula [T Everaert & TVdL, 2004] says $\pi_1^F(A) \cong \frac{K \cap [P,P]}{[P,K]}$. Conclusion: $\pi_1^F(A)$ is the kernel of the morphism $\text{Ker}(F_1(p)) \to F(P)$

Taking the action of the centralisation functor as a definition of a commutator relative to the given adjunction, π_1^F looks as follows. Let $p: P \rightarrow A$ be a projective cover with kernel *K*; apply *F* and *F*₁.

The Hopf formula [T Everaert & TVdL, 2004] says $\pi_1^F(A) \cong \frac{K \cap [P,P]}{[P,K]}$. Conclusion: $\pi_1^F(A)$ is the kernel of the morphism $\text{Ker}(F_1(p)) \to F(P)$.

Let $F \colon \mathbb{C} \to \mathbb{X}$ be a functor where

- \blacktriangleright $\mathbb C$ is semi-abelian algebraically coherent with enough projectives;
- X is (almost) abelian;
- *F* is a regular epi–reflector which preserves pullbacks of regular epis along split epis

and consider in $\mathbb C$ a pushout of split monomorphisms as on the left.

If O = 0, then the result becomes $\pi_1^F(A + B) \cong \pi_1^F(A) \oplus \pi_1^F(B)$.

This is what [M Barr & J Beck, 1969] call a homology coproduct theorem.

When A and B are groups, it is known that for all $n \ge 1$,

 $H_{n+1}(A+B,\mathbb{Z})\cong H_{n+1}(A,\mathbb{Z})\oplus H_{n+1}(B,\mathbb{Z}),$

so is F = ab: Gp \rightarrow Ab, then $\pi_n^F(A + B) \cong \pi_n^F(A) \oplus \pi_n^F(B)$.

Is this a general fact?

[KW Johnson, 1974]

 $\pi_2^G(C_2+C_2)=C_2\oplus C_2\oplus C_2 \not\cong C_2\oplus C_2=\pi_2^G(C_2)\oplus \pi_2^G(C_2),$

for G = ab: Nil₂(Gp) \rightarrow Ab and C_2 the cyclic group of order two. A general homology coproduct theorem applicable to G cannot exist!

- 1 study case n = 1 in a setting wide enough to include Nil₂(Gp);
- 2 study the situation for general n, but in a more restricted context which includes Gp and rules out Nil₂(Gp). (LACC)?

If O = 0, then the result becomes $\pi_1^F(A + B) \cong \pi_1^F(A) \oplus \pi_1^F(B)$. This is what [M Barr & J Beck, 1969] call a homology coproduct theorem.

When A and B are groups, it is known that for all $n \ge 1$,

 $H_{n+1}(A+B,\mathbb{Z})\cong H_{n+1}(A,\mathbb{Z})\oplus H_{n+1}(B,\mathbb{Z}),$

so is F = ab: Gp \rightarrow Ab, then $\pi_n^F(A + B) \cong \pi_n^F(A) \oplus \pi_n^F(B)$.

Is this a general fact?

[KW Johnson, 1974]

 $\pi_2^G(C_2+C_2)=C_2\oplus C_2\oplus C_2 \cong C_2\oplus C_2=\pi_2^G(C_2)\oplus \pi_2^G(C_2),$

for G = ab: Nil₂(Gp) \rightarrow Ab and C_2 the cyclic group of order two. A general homology coproduct theorem applicable to G cannot exist!

- 1 study case n = 1 in a setting wide enough to include Nil₂(Gp);
- 2 study the situation for general n, but in a more restricted context which includes Gp and rules out Nil₂(Gp). (LACC)?

If O = 0, then the result becomes $\pi_1^F(A + B) \cong \pi_1^F(A) \oplus \pi_1^F(B)$. This is what [M Barr & J Beck, 1969] call a homology coproduct theorem.

When *A* and *B* are groups, it is known that for all $n \ge 1$,

$$H_{n+1}(A+B,\mathbb{Z})\cong H_{n+1}(A,\mathbb{Z})\oplus H_{n+1}(B,\mathbb{Z}),$$

so is F = ab: Gp \rightarrow Ab, then $\pi_n^F(A + B) \cong \pi_n^F(A) \oplus \pi_n^F(B)$.

Is this a general fact? [KW Johnson, 1974]

 $\pi_2^G(C_2+C_2)=C_2\oplus C_2\oplus C_2 \not\cong C_2\oplus C_2=\pi_2^G(C_2)\oplus \pi_2^G(C_2),$

for G = ab: Nil₂(Gp) \rightarrow Ab and C_2 the cyclic group of order two. A general homology coproduct theorem applicable to G cannot exist!

- 1 study case n = 1 in a setting wide enough to include Nil₂(Gp);
- 2 study the situation for general n, but in a more restricted context which includes Gp and rules out Nil₂(Gp). (LACC)?

If O = 0, then the result becomes $\pi_1^F(A + B) \cong \pi_1^F(A) \oplus \pi_1^F(B)$. This is what [M Barr & J Beck, 1969] call a homology coproduct theorem.

When *A* and *B* are groups, it is known that for all $n \ge 1$,

$$H_{n+1}(A+B,\mathbb{Z})\cong H_{n+1}(A,\mathbb{Z})\oplus H_{n+1}(B,\mathbb{Z}),$$

so is F = ab: Gp \rightarrow Ab, then $\pi_n^F(A + B) \cong \pi_n^F(A) \oplus \pi_n^F(B)$.

Is this a general fact?

[KW Johnson, 1974]

 $\pi_2^G(C_2+C_2)=C_2\oplus C_2\oplus C_2 \not\cong C_2\oplus C_2=\pi_2^G(C_2)\oplus \pi_2^G(C_2),$

for G = ab: Nil₂(Gp) \rightarrow Ab and C_2 the cyclic group of order two. A general homology coproduct theorem applicable to G cannot exist!

- 1 study case n = 1 in a setting wide enough to include Nil₂(Gp);
- 2 study the situation for general n, but in a more restricted context which includes Gp and rules out Nil₂(Gp). (LACC)?

If O = 0, then the result becomes $\pi_1^F(A + B) \cong \pi_1^F(A) \oplus \pi_1^F(B)$. This is what [M Barr & J Beck, 1969] call a homology coproduct theorem.

When *A* and *B* are groups, it is known that for all $n \ge 1$,

$$H_{n+1}(A+B,\mathbb{Z})\cong H_{n+1}(A,\mathbb{Z})\oplus H_{n+1}(B,\mathbb{Z}),$$

so is F = ab: Gp \rightarrow Ab, then $\pi_n^F(A + B) \cong \pi_n^F(A) \oplus \pi_n^F(B)$.

Is this a general fact? No! [KW Johnson, 1974]

 $\pi_2^{\mathsf{G}}(\mathsf{C}_2 + \mathsf{C}_2) = \mathsf{C}_2 \oplus \mathsf{C}_2 \oplus \mathsf{C}_2 \not\cong \mathsf{C}_2 \oplus \mathsf{C}_2 = \pi_2^{\mathsf{G}}(\mathsf{C}_2) \oplus \pi_2^{\mathsf{G}}(\mathsf{C}_2),$

for G = ab: Nil₂(Gp) \rightarrow Ab and C_2 the cyclic group of order two. A general homology coproduct theorem applicable to G cannot exist!

- 1 study case n = 1 in a setting wide enough to include Nil₂(Gp);
- 2 study the situation for general n, but in a more restricted context which includes Gp and rules out Nil₂(Gp). (LACC)?

If O = 0, then the result becomes $\pi_1^F(A + B) \cong \pi_1^F(A) \oplus \pi_1^F(B)$. This is what [M Barr & J Beck, 1969] call a homology coproduct theorem.

When *A* and *B* are groups, it is known that for all $n \ge 1$,

$$H_{n+1}(A+B,\mathbb{Z})\cong H_{n+1}(A,\mathbb{Z})\oplus H_{n+1}(B,\mathbb{Z}),$$

so is F = ab: Gp \rightarrow Ab, then $\pi_n^F(A + B) \cong \pi_n^F(A) \oplus \pi_n^F(B)$.

Is this a general fact? No! [KW Johnson, 1974] $\pi_2^G(C_2 + C_2) = C_2 \oplus C_2 \oplus C_2 \not\cong C_2 \oplus C_2 = \pi_2^G(C_2) \oplus \pi_2^G(C_2),$ for G = ab: Nil₂(Gp) \rightarrow Ab and C_2 the cyclic group of order two. A general homology coproduct theorem applicable to *G* cannot exist!

- 1 study case n = 1 in a setting wide enough to include Nil₂(Gp);
- 2 study the situation for general n, but in a more restricted context which includes Gp and rules out Nil₂(Gp). (LACC)?

If O = 0, then the result becomes $\pi_1^F(A + B) \cong \pi_1^F(A) \oplus \pi_1^F(B)$. This is what [M Barr & J Beck, 1969] call a homology coproduct theorem.

When *A* and *B* are groups, it is known that for all $n \ge 1$,

$$H_{n+1}(A+B,\mathbb{Z})\cong H_{n+1}(A,\mathbb{Z})\oplus H_{n+1}(B,\mathbb{Z}),$$

so is F = ab: Gp \rightarrow Ab, then $\pi_n^F(A + B) \cong \pi_n^F(A) \oplus \pi_n^F(B)$.

Is this a general fact? No! [KW Johnson, 1974] $\pi_2^G(C_2 + C_2) = C_2 \oplus C_2 \oplus C_2 \oplus C_2 \oplus C_2 = \pi_2^G(C_2) \oplus \pi_2^G(C_2),$

for G = ab: Nil₂(Gp) \rightarrow Ab and C₂ the cyclic group of order two. A general homology coproduct theorem applicable to *G* cannot exist!

- 1 study case n = 1 in a setting wide enough to include Nil₂(Gp);
- 2 study the situation for general n, but in a more restricted context which includes Gp and rules out Nil₂(Gp). (LACC)?

If O = 0, then the result becomes $\pi_1^F(A + B) \cong \pi_1^F(A) \oplus \pi_1^F(B)$. This is what [M Barr & J Beck, 1969] call a homology coproduct theorem.

When *A* and *B* are groups, it is known that for all $n \ge 1$,

$$H_{n+1}(A+B,\mathbb{Z})\cong H_{n+1}(A,\mathbb{Z})\oplus H_{n+1}(B,\mathbb{Z}),$$

so is F = ab: Gp \rightarrow Ab, then $\pi_n^F(A + B) \cong \pi_n^F(A) \oplus \pi_n^F(B)$.

Is this a general fact? No! [KW Johnson, 1974] $\pi_2^C(C_2 + C_2) = C_2 \oplus C_2 \oplus C_2 \not\cong C_2 \oplus C_2 = \pi_2^C(C_2) \oplus \pi_2^C(C_2),$

for G = ab: Nil₂(Gp) \rightarrow Ab and C_2 the cyclic group of order two. A general homology coproduct theorem applicable to *G* cannot exist!

- 1 study case n = 1 in a setting wide enough to include Nil₂(Gp);
- 2 study the situation for general n, but in a more restricted context which includes Gp and rules out Nil₂(Gp). (LACC)?

If O = 0, then the result becomes $\pi_1^F(A + B) \cong \pi_1^F(A) \oplus \pi_1^F(B)$. This is what [M Barr & J Beck, 1969] call a homology coproduct theorem.

When *A* and *B* are groups, it is known that for all $n \ge 1$,

$$H_{n+1}(A+B,\mathbb{Z})\cong H_{n+1}(A,\mathbb{Z})\oplus H_{n+1}(B,\mathbb{Z}),$$

so is F = ab: Gp \rightarrow Ab, then $\pi_n^F(A + B) \cong \pi_n^F(A) \oplus \pi_n^F(B)$.

Is this a general fact? No! [KW Johnson, 1974] $\pi_2^C(C_2 + C_2) = C_2 \oplus C_2 \oplus C_2 \oplus C_2 \oplus C_2 = \pi_2^C(C_2) \oplus \pi_2^C(C_2),$

for G = ab: Nil₂(Gp) \rightarrow Ab and C_2 the cyclic group of order two. A general homology coproduct theorem applicable to *G* cannot exist!

- 1 study case n = 1 in a setting wide enough to include Nil₂(Gp);
- study the situation for general n, but in a more restricted context which includes Gp and rules out Nil₂(Gp). \longrightarrow (LACC)?

If O = 0, then the result becomes $\pi_1^F(A + B) \cong \pi_1^F(A) \oplus \pi_1^F(B)$. This is what [M Barr & J Beck, 1969] call a homology coproduct theorem.

When *A* and *B* are groups, it is known that for all $n \ge 1$,

$$H_{n+1}(A+B,\mathbb{Z})\cong H_{n+1}(A,\mathbb{Z})\oplus H_{n+1}(B,\mathbb{Z}),$$

so is F = ab: Gp \rightarrow Ab, then $\pi_n^F(A + B) \cong \pi_n^F(A) \oplus \pi_n^F(B)$.

Is this a general fact? No! [KW Johnson, 1974] $\pi_2^C(C_2 + C_2) = C_2 \oplus C_2 \oplus C_2 \not\cong C_2 \oplus C_2 = \pi_2^C(C_2) \oplus \pi_2^C(C_2),$

for G = ab: Nil₂(Gp) \rightarrow Ab and C_2 the cyclic group of order two. A general homology coproduct theorem applicable to *G* cannot exist!

- 1 study case n = 1 in a setting wide enough to include Nil₂(Gp);
- 2 study the situation for general *n*, but in a more restricted context which includes Gp and rules out Nil₂(Gp). (LACC)

If O = 0, then the result becomes $\pi_1^F(A + B) \cong \pi_1^F(A) \oplus \pi_1^F(B)$. This is what [M Barr & J Beck, 1969] call a homology coproduct theorem.

When *A* and *B* are groups, it is known that for all $n \ge 1$,

$$H_{n+1}(A+B,\mathbb{Z})\cong H_{n+1}(A,\mathbb{Z})\oplus H_{n+1}(B,\mathbb{Z}),$$

so is F = ab: Gp \rightarrow Ab, then $\pi_n^F(A + B) \cong \pi_n^F(A) \oplus \pi_n^F(B)$.

Is this a general fact? No! [KW Johnson, 1974] $\pi_2^G(C_2 + C_2) = C_2 \oplus C_2 \oplus C_2 \not\cong C_2 \oplus C_2 = \pi_2^G(C_2) \oplus \pi_2^G(C_2),$ for C = ab; Nil-(Cp) \rightarrow Ab and C, the cyclic group of order two

for G = ab: Nil₂(Gp) \rightarrow Ab and C_2 the cyclic group of order two. A general homology coproduct theorem applicable to *G* cannot exist!

- 1 study case n = 1 in a setting wide enough to include Nil₂(Gp);
- 2 study the situation for general *n*, but in a more restricted context which includes Gp and rules out Nil₂(Gp). (LACC)?

Category is	Noteworthy aspects	Examples
abelian	classical homological algebra additive structure on homsets subobjects are normal	Ab, $\operatorname{Mod}_{\mathcal{R}}$, $\operatorname{Sh}_{\mathscr{T}}(\operatorname{Ab})$
semi-abelian + (LACC)	internal (co)homology	Gp, XMod, Lie _{<i>K</i>} , HopfAlg _{<i>K</i>,coc}
semi-abelian + algebraically coherent	Seifert-van Kampen universal central extensions three subobjects lemma	Nil _n (Gp), Gp _{tí} , Cat ⁿ (Gp) all <i>categories of interest</i> : Rng, Alg _K , Leib _K
semi-abelian + (SH)	internal crossed modules action on abelian object is Beck module cohomology via higher centrality	NAAlg _K , Jordan algebras, Heyting semilattices
semi-abelian	basic homological algebra internal actions	Loop, DiGp all varieties of Ω -groups

- semi-abelian = pointed + Barr exact + protomodular + finite sums
- Internal actions correspond to split extensions: if *B* acts on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xleftarrow{f}{\longleftrightarrow} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$. Think of a point as a "non-abelian module".

Internal actions correspond to split extensions: for *B* acting on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xleftarrow{f} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$.

When the underlying object of a sum of *B*-actions $(X, \xi) + (Y, \upsilon)$ is the sum X + Y, this means that the category \mathbb{C} is **(LACC)**.

When the canonical comparison $X + Y \rightarrow K((X, \xi) + (Y, \upsilon))$ is merely a regular epimorphism (instead of an isomorphism), then the category \mathbb{C} is **algebraically coherent**.

Thus, algebraic coherence means that the change-of-base functors in the fibration of points preserve jointly strongly epimorphic pairs: if (X, ξ) and (Y, v) cover (Z, ζ) in $Act_B(\mathbb{C})$, then X and Y cover Z in \mathbb{C} .

Internal actions correspond to split extensions: for *B* acting on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xleftarrow{f} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$.

When the underlying object of a sum of *B*-actions $(X, \xi) + (Y, \upsilon)$ is the sum X + Y, this means that the category \mathbb{C} is **(LACC)**.

When the canonical comparison $X + Y \rightarrow K((X, \xi) + (Y, \upsilon))$ is merely a regular epimorphism (instead of an isomorphism), then the category \mathbb{C} is **algebraically coherent**.

Thus, algebraic coherence means that the change-of-base functors in the fibration of points preserve jointly strongly epimorphic pairs: if (X, ξ) and (Y, v) cover (Z, ζ) in $Act_B(\mathbb{C})$, then X and Y cover Z in \mathbb{C} .

Internal actions correspond to split extensions: for *B* acting on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xleftarrow{f} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$.

When the underlying object of a sum of *B*-actions $(X, \xi) + (Y, \upsilon)$ is the sum X + Y, this means that the category \mathbb{C} is **(LACC)**.

When the canonical comparison $X + Y \rightarrow K((X, \xi) + (Y, v))$ is merely a regular epimorphism (instead of an isomorphism), then the category \mathbb{C} is **algebraically coherent**.

Thus, algebraic coherence means that the change-of-base functors in the fibration of points preserve jointly strongly epimorphic pairs: if (X,ξ) and (Y, v) cover (Z, ζ) in $Act_B(\mathbb{C})$, then X and Y cover Z in \mathbb{C} .

Internal actions correspond to split extensions: for *B* acting on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xleftarrow{f} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$.

When the underlying object of a sum of *B*-actions $(X, \xi) + (Y, \upsilon)$ is the sum X + Y, this means that the category \mathbb{C} is **(LACC)**.

When the canonical comparison $X + Y \rightarrow K((X, \xi) + (Y, \upsilon))$ is merely a regular epimorphism (instead of an isomorphism), then the category \mathbb{C} is **algebraically coherent**.

Thus, algebraic coherence means that the change-of-base functors in the fibration of points preserve jointly strongly epimorphic pairs: if (X, ξ) and (Y, v) cover (Z, ζ) in $Act_B(\mathbb{C})$, then X and Y cover Z in \mathbb{C} .

Internal actions correspond to split extensions: for *B* acting on *X* via ξ ,

$$0 \longrightarrow X \triangleright \longrightarrow X \rtimes_{\xi} B \xleftarrow{f} B \longrightarrow 0.$$

Thus an action corresponds to a **point**: a couple (f, s) with $fs = 1_B$.

When the underlying object of a sum of *B*-actions $(X, \xi) + (Y, \upsilon)$ is the sum X + Y, this means that the category \mathbb{C} is **(LACC)**.

When the canonical comparison $X + Y \rightarrow K((X, \xi) + (Y, v))$ is merely a regular epimorphism (instead of an isomorphism), then the category \mathbb{C} is **algebraically coherent**.

Thus, algebraic coherence means that the change-of-base functors in the fibration of points preserve jointly strongly epimorphic pairs: if (X, ξ) and (Y, v) cover (Z, ζ) in $Act_B(\mathbb{C})$, then X and Y cover Z in \mathbb{C} .

Let $F \colon \mathbb{C} \to \mathbb{X}$ be a functor where

- \blacktriangleright $\mathbb C$ is semi-abelian algebraically coherent with enough projectives;
- X is (almost) abelian;
- *F* is a regular epi–reflector which preserves pullbacks of regular epis along split epis

and consider in $\mathbb C$ a pushout of split monomorphisms as on the left.

/e take projective presentations:

Since $\pi_1^F(A)$ is the kernel of $\operatorname{Ker}(F_1(p)) \to F(P)$, we consider

Since $\pi_1^F(A)$ is the kernel of $\text{Ker}(F_1(p)) \to F(P)$, we consider

We take projective presentations:

Since $\pi_1^F(A)$ is the kernel of $\operatorname{Ker}(F_1(p)) \to F(P)$, we consider

We take projective presentations:

Since $\pi_1^F(A)$ is the kernel of $\operatorname{Ker}(F_1(p)) \to F(P)$, we consider

We take projective presentations:

Since $\pi_1^F(A)$ is the kernel of $\operatorname{Ker}(F_1(p)) \to F(P)$, we consider

$$\operatorname{Ker}(F_1(p)) \xrightarrow{} \operatorname{Ker}(F_1(p+q)) \xrightarrow{} \operatorname{Ker}(F_1(q))$$

is a biproduct by the next result.

Proposition

In an algebraically coherent semi-abelian category, consider:

If f is a normal extension, κ and κ' are split monomorphisms and (z, z') is jointly strongly epimorphic, then (κ, κ') is jointly strongly epimorphic.

This argument doesn't this extend to higher degrees.

$$\operatorname{Ker}(F_1(p)) \xrightarrow{} \operatorname{Ker}(F_1(p+q)) \xrightarrow{} \operatorname{Ker}(F_1(q))$$

is a biproduct by the next result.

Proposition

In an algebraically coherent semi-abelian category, consider:

If *f* is a normal extension, κ and κ' are split monomorphisms and (z, z') is jointly strongly epimorphic, then (κ, κ') is jointly strongly epimorphic.

This argument doesn't this extend to higher degrees.

$$\operatorname{Ker}(F_1(p)) \xrightarrow{} \operatorname{Ker}(F_1(p+q)) \xrightarrow{} \operatorname{Ker}(F_1(q))$$

is a biproduct by the next result.

Proposition

In an algebraically coherent semi-abelian category, consider:

If *f* is a normal extension, κ and κ' are split monomorphisms and (z, z') is jointly strongly epimorphic, then (κ, κ') is jointly strongly epimorphic.

• This argument doesn't this extend to higher degrees.

Theorem

For *F* any reflector from a semi-abelian algebraically coherent variety to an abelian subvariety, its first left derived functor L_1F preserves pushouts of split monomorphisms.

 Main point for me: role of categorical-algebraic conditions such as *algebraic coherence*.

- Concrete applications?
- What is the right context for a higher-order result?
- Beyond split monomorphisms?

Theorem

For *F* any reflector from a semi-abelian algebraically coherent variety to an abelian subvariety, its first left derived functor L_1F preserves pushouts of split monomorphisms.

 Main point for me: role of categorical-algebraic conditions such as *algebraic coherence*.

- Concrete applications?
- What is the right context for a higher-order result?
- Beyond split monomorphisms?

Theorem

For *F* any reflector from a semi-abelian algebraically coherent variety to an abelian subvariety, its first left derived functor L_1F preserves pushouts of split monomorphisms.

 Main point for me: role of categorical-algebraic conditions such as *algebraic coherence*.

- Concrete applications?
- What is the right context for a higher-order result?
- Beyond split monomorphisms?

Theorem

For *F* any reflector from a semi-abelian algebraically coherent variety to an abelian subvariety, its first left derived functor L_1F preserves pushouts of split monomorphisms.

 Main point for me: role of categorical-algebraic conditions such as *algebraic coherence*.

- Concrete applications?
- What is the right context for a higher-order result?
- Beyond split monomorphisms?

Theorem

For *F* any reflector from a semi-abelian algebraically coherent variety to an abelian subvariety, its first left derived functor L_1F preserves pushouts of split monomorphisms.

 Main point for me: role of categorical-algebraic conditions such as *algebraic coherence*.

- Concrete applications?
- What is the right context for a higher-order result?
- Beyond split monomorphisms?

Thank you!