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Today: towards an algebraic version of the Seifert—van Kampen theorem
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» X=A+40 B =AU B: Aand B cover X, the square is a pushout;
» O = A Xx B = A n B: the square is a pullback.
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where
» A, B and O are open, path-connected subspaces of X;
» X=A+40 B =AU B: Aand B cover X, the square is a pushout;
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Then the square on the right is a pushout in Gp.

» Many variations on this theme exist, in topology,
in algebraic geometry and in algebra.

» Grothendieck’s version in [SGA1, 1971] is based on descent theory.
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Then the square on the right is a pushout square in X.

» Any reflector from a category of interest to an abelian subvariety.
» Our proof technique is new, based on categorical Galois theory,

which is related to descent—no obvious connection with [SGAT1].
» This is a first step: perhaps something more general is possible.
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The fundamental group, Il

Taking the action of the centralisation functor as a definition of a
commutator relative to the given adjunction, 7} looks as follows.

Let p: P — A be a projective cover with kernel K; apply F and Fy.

0 0

00— (A) b—> 7 — > [A,A] —>0
¢ Y

The Hopf formula [T Everaert & TVdL, 2004] says 7} (A) = Kr[;[f;’]P].

Conclusion: 7} (A) is the kernel of the morphism Ker(F1(p)) — F(P).
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If O = 0, then the result becomes 7/ (A + B) =~ 7 (A) @ 7} (B).
This is what [M Barr & J Beck, 1969] call a homology coproduct theorem.

When A and B are groups, it is known that for all n > 1,
Hp1(A+ B, Z) = Hyy1(A, Z) @ Hp11(B, Z),

sois F = ab: Gp — Ab, then 7t (A + B) =~ =f(A) @ 7/ (B).
Is this a general fact? No! [KW Johnson, 1974]

T(Co+ o) = CH@®Cr @ Ca % Coa @ Gy = 75 (Ca) ® 1§ (Ca),
for G = ab: Nila(Gp) — Ab and Ca the cyclic group of order two.
A general homology coproduct theorem applicable to G cannot exist!
This leaves open only two courses of investigation:

1 study case n = 1 in a setting wide enough to include Nila(Gp);

2 study the situation for general n, but in a more restricted context
which includes Gp and rules out Nila(Gp). v~ (LACC)?



The semi-abelian context

Category is Noteworthy aspects Examples

classical homological algebra

abelian additive structure on homsets Ab, Modg, Sh.7 (Ab)
subobjects are normal
semi-abelian + (LACC) internal (cohomology Gp, XMod, Liek, HopfAlg, ..
ifert— Nil,(Gp), Gpy;, Cat"(G
semi-abelian + ASelfert van KampenA llln( p) 2Py f‘a ( P.)
algebraically coherent universal central extensions all categories of interest:
three subobjects lemma Rng, Alg,, Leibg

. . ~ internal crossed modules
semi-abelian + (SH)  action on abelian object is Beck module

cohomology via higher centrality

NAAlg,, Jordan algebras,
Heyting semilattices

semi-abelian basic homological algebra Loop, DiGp
internal actions all varieties of Q2-groups

» semi-abelian = pointed + Barr exact + protomodular + finite sums

» Internal actions correspond to split extensions: if B acts on X via &,
f
0 ——=>X>—>Xxg B—2B——>0.
S

Thus an action corresponds to a point: a couple (f,s) with fs = 1.
Think of a point as a “non-abelian module”.

» commutators measure non-abelianness v~ commutator conditions
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Algebraic coherence [AS Cigoli, JRA Gray & TVdL, 2015]

Internal actions correspond to split extensions: for B acting on X via &,
f
00— X>—> X xg B—%B—=>0.
s
Thus an action corresponds to a poeint: a couple (f, s) with fs = 1.

When the underlying object of a sum of B-actions (X, &) + (Y, v)
is the sum X + Y, this means that the category C is (LACC).

When the canonical comparison X + Y — K((X, &) + (Y, v))
is merely a regular epimorphism (instead of an isomorphism),
then the category C is algebraically coherent.

Thus, algebraic coherence means that the change-of-base functors in
the fibration of points preserve jointly strongly epimorphic pairs:
if (X,€) and (Y, v) cover (Z,() in Actg(C), then X and Y cover Z in C.

This technical condition has strong categorical-algebraic consequences,
while (in contrast with (LACC)) many semi-abelian categories satisfy it.



A Seifert-van Kampen theorem in non-abelian algebra

Let F: C — X be a functor where
» C is semi-abelian algebraically coherent with enough projectives;
» Xis (almost) abelian;

» Fis a regular epi-reflector which
preserves pullbacks of regular epis along split epis

and consider in C a pushout of split monomorphisms as on the left.

j £ () r
Oz =8B m(0) < Zm(B)
A A A A
il Ls i (1) , lﬁ(bs)
AL A+oB m(A) <g 7 (A +6 B)
: 1 (24)

Then the square on the right is a pushout square in X.
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P=——=P+Q—>Q
We take projective presentations: Pl lp—i—q lq
AS—SA+B=—=8

Since 7 (A) is the kernel of Ker(Fy(p)) — F(P), we consider

Q——————rQ ——0

We want a biproduct in the top row. The bottom row is a biproduct.
We only need to prove that the second row is a biproduct:
this follows from algebraic coherence.
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The diagram
Ker(Fi(p)) =——=Ker(Fi(p + q)) =—=Ker(F1(q))
is a biproduct by the next result.

Proposition

In an algebraically coherent semi-abelian category, consider:
0——=K>—>Z—>T—>0
0—> K> X # Y——=>0
0——=K'—>72—>7—>0

If fis a normal extension, k and ' are split monomorphisms and (z, Z’)

is jointly strongly epimorphic, then (k, ') is jointly strongly epimorphic.

» This argument doesn’t this extend to higher degrees.
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Conclusion

Theorem

For F any reflector from a semi-abelian algebraically coherent variety
to an abelian subvariety, its first left derived functor L F

preserves pushouts of split monomorphisms.

» Main point for me: role of categorical-algebraic conditions
such as algebraic coherence.
This ingredient is missing in, for instance, [M Barr & ] Beck, 1969].

» Concrete applications?
» What is the right context for a higher-order result?

» Beyond split monomorphisms?



Thank you!



