Frames as topological algebras

Giuseppe Rosolini

joint work with Giulia Frosoni and Alessio Santamaria

> 100th Peripatetic Seminar on Sheaves and Logic Cambridge, 21-22 May 2016

• The cartesian closed category of the equilogical spaces

 \bullet The monad Σ^2 on the Sierpinski space Σ

 \bullet The comparision between the algebras for Σ^2 and frames

Algebraic Lattices

In a complete poset (P, \leq) , an element $c \in P$ is *compact* if, for every directed subset $X \subseteq P$,

if $c \leq \bigvee X$, then there is $x \in X$ such that $c \leq x$.

A complete lattice $\mathscr{A} = (|\mathscr{A}|, \leq_{\mathscr{A}})$ is *algebraic* if every element is the directed join of the compact elements below it.

The compact elements are closed under finite joins.

 \therefore An algebraic lattice is isomorphic to the order of the ideals of its compact elements.

A function between algebraic lattices is *Scott-continuous* if it preserves joins of directed subsets.

The category AlgLatt of algebraic lattices and Scott-continuous functions is cartesian closed.

Equilogical spaces as partial equivalence relations on algebraic lattices

equilogical space: $\mathbf{E} = (\mathscr{A}_{\mathbf{E}}, \sim_{\mathbf{E}})$ where

- $\mathscr{A}_{\mathsf{E}} = (|\mathscr{A}_{\mathsf{E}}|, \leq_{\mathscr{A}_{\mathsf{E}}})$ is an algebraic lattice
- $\sim_{\mathbf{E}}$ is a symmetric and transitive relation on $|\mathscr{A}_{\mathbf{E}}|$

map of equilogical spaces: $\mathbf{E} \xrightarrow{[f]_{\equiv}} \mathbf{D}$ is an equivalence class of Scott-continuous functions $\mathscr{A}_{\mathbf{E}} \xrightarrow{f} \mathscr{A}_{\mathbf{D}}$ such that

whenever $a \sim_{\mathbf{E}} b$ it is also $f(a) \sim_{\mathbf{D}} f(b)$.

Two such f and f' are equivalent $f \equiv f'$ when

for every $a \sim_{\mathbf{D}} a$, it is $f(a) \sim_{\mathbf{D}} f'(a)$.

Equ: the category of equilogical spaces and maps between them. Bauer, A., Birkedal, L., Scott, D.S. Equilogical spaces. Theoret. Comput. Sci. 315 (2004)

$$T = ({ * }, =)$$

$$\mathbf{E} \times \mathbf{D} = (\mathscr{A}_{\mathbf{E}} \times \mathscr{A}_{\mathbf{D}}, \smile_{\mathbf{E} \times \mathbf{D}})$$

where $\smile_{\mathbf{E} \times \mathbf{D}}$ is defined componentwise.

$$\mathbf{D}^{\mathbf{E}} = (\mathscr{A}_{\mathbf{D}}^{\mathscr{A}_{\mathbf{E}}}, \smile_{\mathbf{D}^{\mathbf{E}}})$$

where, for $\mathscr{A}_{\mathbf{E}} \xrightarrow{f} \mathscr{A}_{\mathbf{D}}$, $f \smile_{\mathbf{D}^{\mathbf{E}}} g$ is defined as follows:

for every $a, b \in |\mathscr{A}_{\mathbf{E}}|$, if $a \smile_{\mathbf{E}} b$ then $f(a) \smile_{\mathbf{D}} g(b)$.

The "global section" functor $\hom_{\mathcal{Equ}}(\mathbf{T}, -)$ is isomorphic to

Since **T** is projective in $\mathcal{E}qu$, Γ preserves quotients.

Equilogical spaces and T₀-spaces

Since algebraic lattices are injective in Top_0 , every continuous map

 $S \xrightarrow{h} S'$

Since algebraic lattices are injective in Top_0 , every continuous map can be extended continuously along the embeddings

If we write $=_S$ for the restriction of the identity relation of $\mathscr{P}(\tau_S)$ to S, the diagram above gives a map of equilogical spaces

$$(\mathscr{P}(\tau_{S}),=_{S}) \xrightarrow{[h']_{\equiv}} (\mathscr{P}(\tau_{S'}),=_{S'})$$

The assignment

$$(\mathscr{P}(\tau_{S}),=_{S}) \xrightarrow{[h']_{\equiv}} (\mathscr{P}(\tau_{S'}),=_{S'})$$

extends to a full embedding of categories

The embedding preserve all limits of Top_0 and every exponential which exists in Top_0 .

Equilogical spaces and algebraic lattices

Taking the diagonal relation on an algebraic lattice \mathscr{A} determines an equilogical space. Indeed there is a full embedding

An algebraic lattice is also a T_0 -space when endowed with the Scott topology.

Equilogical spaces, T₀-spaces, algebraic lattices

The image of **Y** consists of those equilogical spaces $\mathbf{E} = (\mathscr{A}_{\mathbf{E}}, \smile_{\mathbf{E}})$ where $\smile_{\mathbf{E}} \subseteq |\mathscr{A}_{\mathbf{E}}| \times |\mathscr{A}_{\mathbf{E}}|$ is *subidentical*, *i.e.* $\smile_{\mathbf{E}} \subseteq =_{|\mathscr{A}_{\mathbf{E}}|}$.

There is another side to it: the equilogical spaces $\mathbf{E} = (\mathscr{A}_{\mathbf{E}}, \smile_{\mathbf{E}})$ where $\smile_{\mathbf{E}} \subseteq |\mathscr{A}_{\mathbf{E}}| \times |\mathscr{A}_{\mathbf{E}}|$ is *superidentical*

Equilogical spaces, T₀-spaces, algebraic lattices

The image of **Y** consists of those equilogical spaces $\mathbf{E} = (\mathscr{A}_{\mathbf{E}}, \smile_{\mathbf{E}})$ where $\smile_{\mathbf{E}} \subseteq |\mathscr{A}_{\mathbf{E}}| \times |\mathscr{A}_{\mathbf{E}}|$ is *subidentical*, *i.e.* $\smile_{\mathbf{E}} \subseteq =_{|\mathscr{A}_{\mathbf{E}}|}$.

- There is another side to it: the equilogical spaces $\mathbf{E} = (\mathscr{A}_{\mathbf{E}}, \smile_{\mathbf{E}})$ where $\smile_{\mathbf{E}} \subseteq |\mathscr{A}_{\mathbf{E}}| \times |\mathscr{A}_{\mathbf{E}}|$ is superidentical reflexive.
- \mathcal{REqu} : the full subcategory on the reflexive equilogical spaces.

Equilogical spaces, T₀-spaces, algebraic lattices

The image of **Y** consists of those equilogical spaces $\mathbf{E} = (\mathscr{A}_{\mathbf{E}}, \smile_{\mathbf{E}})$ where $\smile_{\mathbf{E}} \subseteq |\mathscr{A}_{\mathbf{E}}| \times |\mathscr{A}_{\mathbf{E}}|$ is *subidentical*, *i.e.* $\smile_{\mathbf{E}} \subseteq =_{|\mathscr{A}_{\mathbf{E}}|}$.

- There is another side to it: the equilogical spaces $\mathbf{E} = (\mathscr{A}_{\mathbf{E}}, \smile_{\mathbf{E}})$ where $\smile_{\mathbf{E}} \subseteq |\mathscr{A}_{\mathbf{E}}| \times |\mathscr{A}_{\mathbf{E}}|$ is superidentical reflexive.
- \mathcal{REqu} : the full subcategory on the reflexive equilogical spaces.

The monad Σ^2

The Sierpinski space $\Sigma = \begin{vmatrix} (\underline{T}) \\ 1 \end{vmatrix}$ is an algebraic lattice. $\mathcal{E}qu^{\text{op}} \stackrel{\boldsymbol{\Delta}(\Sigma)^{(-)}}{\stackrel{\boldsymbol{\Delta}}{\underbrace{}} \mathcal{L}_{(\Sigma)^{(-)}}} \mathcal{E}qu$

Consider the self-adjunction

The monad Σ^2

The Sierpinski space $\Sigma = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an algebraic lattice. $\mathcal{E}qu^{\text{op}} \xrightarrow{\Sigma^{(-)}} \mathcal{E}qu$

Consider the self-adjunction

and the induced (strong) monad Σ^2 on $\mathcal{E}qu$

$$\mathcal{E}qu \xrightarrow{\Sigma^{(\Sigma^{(-)})}} \mathcal{E}qu \qquad \eta_{\mathbf{E}} := \mathbf{E} \underbrace{ev \circ swap}_{\Sigma^{(\Sigma^{\mathbf{E}})}} \Sigma^{(\Sigma^{\mathbf{E}})} \\ \mu_{\mathbf{E}} := \sum_{\Sigma^{(\Sigma^{(\Sigma^{\mathbf{E}})})}} \underbrace{\Sigma^{\eta_{\Sigma^{\mathbf{E}}}}}_{\Sigma^{(\Sigma^{\mathbf{E}})}} \Sigma^{(\Sigma^{\mathbf{E}})}$$

Taylor, P.

Foundations for computable topology.

Foundational theories of classical and constructive mathematics West.Ont.Ser.Phil.Sci. 76 (2011)

Vickers, S.

The double powerlocale and exponentiation: a case study in geometric logic. Th.Appl.Cat. 12 (2004)

Krivine, J.-L.

Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Arch.Math.Log. 2001 Thielecke, H.

Continuation Semantics and Self-adjointness. Electr.Not.Theor.Comp.Sci. 1997

 Σ has a canonical structure of Σ^2 -algebra.

Any power $\Sigma^{\mathbf{E}}$ of Σ has the pointwise structure of Σ^2 -algebra.

Any algebra for the monad Σ^2 has a canonically induced order from the retraction pair

The monad Σ^2 and soberification

For
$$\mathbf{E} = (\mathscr{A}_{\mathbf{E}}, \smile_{\mathbf{E}})$$
 the exponential $\Sigma^{\mathbf{E}}$ is $(\Sigma^{\mathscr{A}_{\mathbf{E}}}, \smile_{\Sigma^{\mathbf{E}}})$
where, for $\mathscr{A}_{\mathbf{E}} \xrightarrow{f} \Sigma$ Scott-continuous,

 $f \smile_{\Sigma^{E}} g$ if and only if, whenever $a \smile_{E} b$, it is f(a) = g(b).

If $\smile_{\mathbf{E}}$ is subreflexive, then $\smile_{\Sigma^{\mathbf{E}}}$ is reflexive.

If $\smile_{\mathbf{E}}$ is reflexive, then $\smile_{\Sigma^{\mathbf{E}}}$ is subreflexive.

For a T_0 -space *S*

- the equilogical space $\Sigma^{(\Sigma^{S})}$ is a T₀-space
- the equilogical space $[\Sigma^S, \Sigma]$ of Σ^2 -homomorphisms from Σ^S to Σ is the soberification of the space S

Bucalo, A., Rosolini, G. Sobriety for equilogical spaces. Theoret. Comput. Sci. 546 (2014)

What are the algebras for Σ^2 ?

A *frame* is a complete lattice such that finite meets distribute over arbitrary joins:

$$x \land \bigvee Y = \bigvee \{x \land y \mid y \in Y\}.$$

 \mathcal{Frm} : the category of frames and frames homomorphisms.

Because the frame structure on Σ is continuous, the global section functor lifts along the forgetful functors:

- $F = (|F|, \leq)$: a frame
- \mathscr{I}_{F} : the algebraic lattice of *ideals of F*, *i.e.* non-empty, downward-closed, upward-directed subsets of |F|.
- \mathscr{I}_F is
 - (\clubsuit) the free directed-complete poset on the poset ($|F|, \leq$)
 - (**\bullet**) the free frame on the bounded distributive lattice ($|F|, \leq$).

- $F = (|F|, \leq)$: a frame
- \mathscr{I}_{F} : the algebraic lattice of *ideals of F*, *i.e.* non-empty, downward-closed, upward-directed subsets of |F|.

 \mathscr{I}_F is

- (\clubsuit) the free directed-complete poset on the poset ($|F|, \leq$)
- (**\bullet**) the free frame on the bounded distributive lattice ($|F|, \leq$).

Since \mathscr{I}_F is (\blacklozenge), consider the frame structure map

$$\bigvee : \mathscr{I}_F \to F.$$

Let \sim_F be the equivalence relation on \mathscr{I}_F obtained by taking the kernel pair of the function \bigvee :

$$I \sim_F J$$
 if and only if $\bigvee I = \bigvee J$.

Consider the reflexive equilogical space

$$\mathbf{L}(F) := (\mathscr{I}_F, \sim_F).$$

- $F = (|F|, \leq)$: a frame
- \mathscr{I}_{F} : the algebraic lattice of *ideals of F*, *i.e.* non-empty, downward-closed, upward-directed subsets of |F|.
- \mathscr{I}_F is
 - (\clubsuit) the free directed-complete poset on the poset ($|F|, \leq$)
 - (**\bullet**) the free frame on the bounded distributive lattice ($|F|, \leq$).

Since \mathcal{I}_F is (\clubsuit),

Frames are the Σ^2 -algebras on the reflexive equilogical spaces.

Every object **E** in $\mathcal{E}qu$ appears in a quotient of the form

The equilogical space underlying a Σ^2 -algebra $\Sigma^{(\Sigma^A)} \xrightarrow{\alpha} A$ appears in a quotient of the form

Every object **E** in $\mathcal{E}qu$ appears in a quotient of the form

The equilogical space underlying a Σ^2 -algebra $\Sigma^{(\Sigma^A)} \xrightarrow{\alpha} A$ appears in a quotient of the form

$$\Gamma(\mathbf{A}) \longleftrightarrow \Gamma(Q) \hookrightarrow \Gamma(\mathscr{F})$$

$$\uparrow h$$

$$F$$

Every object **E** in $\mathcal{E}qu$ appears in a quotient of the form

The equilogical space underlying a Σ^2 -algebra $\Sigma^{(\Sigma^A)} \xrightarrow{\alpha} A$ appears in a quotient of the form

Every object **E** in $\mathcal{E}qu$ appears in a quotient of the form

The equilogical space underlying a Σ^2 -algebra $\Sigma^{(\Sigma^A)} \xrightarrow{\alpha} A$ appears in a quotient of the form

Every object **E** in $\mathcal{E}qu$ appears in a quotient of the form

The equilogical space underlying a Σ^2 -algebra $\Sigma^{(\Sigma^A)} \xrightarrow{\alpha} A$ appears in a quotient of the form

Every object **E** in $\mathcal{E}qu$ appears in a quotient of the form

The equilogical space underlying a Σ^2 -algebra $\Sigma^{(\Sigma^A)} \xrightarrow{\alpha} A$ appears in a quotient of the form

Every object **E** in $\mathcal{E}qu$ appears in a quotient of the form

The equilogical space underlying a Σ^2 -algebra $\Sigma^{(\Sigma^A)} \xrightarrow{\alpha} A$ appears in a quotient of the form

Every object **E** in $\mathcal{E}qu$ appears in a quotient of the form

The equilogical space underlying a Σ^2 -algebra $\Sigma^{(\Sigma^A)} \xrightarrow{\alpha} A$ appears in a quotient of the form

Frames as topological algebras

Power, J., Robinson, E.P. Premonoidal categories and notions of computation. Math. Struc. Comput. Sci. 7 (1997)