Frames as
topological algebras

Giuseppe Rosolini

joint work with Giulia Frosoni
and Alessio Santamaria

100t Peripatetic Seminar on
Sheaves and Logic
Cambridge, 21-22 May 2016



Overview of the talk

e The cartesian closed category of the equilogical spaces
e The monad X2 on the Sierpinski space

e The comparision between the algebras for £2 and frames



Algebraic Lattices

In a complete poset (P, <), an element c € P is compact if, for every
directed subset X C P,

if c < \/ X, then there is x € X such that ¢ < x.

A complete lattice « = (||, £v) is algebraic if every element is the
directed join of the compact elements below it.

The compact elements are closed under finite joins.

~. An algebraic lattice is isomorphic to the order of the ideals of its
compact elements.

A function between algebraic lattices is Scott-continuous if it
preserves joins of directed subsets.

The category ﬁl[gLatt of algebraic lattices and Scott-continuous
functions is cartesian closed.



Equilogical spaces

as partial equivalence relations on algebraic lattices

equilogical space: E = (€, —g) Where

e ok = (|7&|, <) is an algebraic lattice
e —E iS a symmetric and transitive relation on ||

[f1=

map of equilogical spaces: E D is an equivalence class

of Scott-continuous functions < op such that
whenever a —g b it is also f(a) —p f(b).
Two such f and f’ are equivalent f = f’ when
for every a—p q, itis f(a) —p f’(a).

‘Equ: the category of equilogical spaces and maps between them.

Bauer, A., Birkedal, L., Scott, D.S.
Equilogical spaces. Theoret. Comput. Sci. 315 (2004)



‘Equ is a cartesian closed category

T=({*}=)

E X D = (% X 9D, —ExD)
where —gxp is defined componentwise.

DE = (%, —pE)

where, for o b , [ —pE g is defined as follows:

for every a, b € ||, if a —g b then f(a) —p g(b).



Equilogical spaces and sets

The “global section” functor homggu(T, -) is isomorphic to

Equ r Set
E—~{acleklla-ea}l [__
U]E* ]_ci

D~ {belawpl|b-pb}|__

Since T is projective in Equ, I preserves quotients.



Equilogical spaces and Tg-spaces

Since algebraic lattices are injective in Topo, every continuous map



Equilogical spaces and Tg-spaces

Since algebraic lattices are injective in Topo, every continuous map
can be extended continuously along the embeddings

X S h Sty

N

Ue  P2(15) 1 P(15) Uy

If we write =g for the restriction of the identity relation of #(t1s) to S,
the diagram above gives a map of equilogical spaces

[h]=

(2(7s), =s) (2(15), =s7)




Equilogical spaces and Tg-spaces

The assignment

(P(15), =) 1A= (2 (16, =5)

extends to a full embedding of categories

Topo< Y

Equ
St (2(15), =5)

h—————[h]=

S (Z(15), =5")

The embedding preserve all limits of ‘Topo and
every exponential which exists in ‘Topo.



Equilogical spaces and algebraic lattices

Taking the diagonal relation on an algebraic lattice . determines an
equilogical space. Indeed there is a full embedding

AlgLatt B Equ
o | (o, =)
Lm [hl<|
A (', =1))

An algebraic lattice is also a Tp-space when endowed with the Scott
topology.

AlgLatt Sc Top,
o | (l1, 0)
ht hl
d (1’|, 0")




Equilogical spaces, Tgp-spaces, algebraic lattices

AlgLatt

Sc

Topo

T

The image of Y consists of those equilogical spaces E = («, —E)
where —gC |#| x || is subidentical, i.e. —gC=|u|.

Equ

There is another side to it: the equilogical spaces E = (@, —E)
where —gC || X | 2| is superidentical



Equilogical spaces, Tgp-spaces, algebraic lattices

Sc A

Topo

T

Equ

The image of Y consists of those equilogical spaces E = («, —E)
where —gC |#| x || is subidentical, i.e. —gC=|u|.

There is another side to it: the equilogical spaces E = (@, —E)
where —gC | 2| X | 2| is superidentical reflexive.

REqu: the full subcategory on the reflexive equilogical spaces.



Equilogical spaces, Tgp-spaces, algebraic lattices

AlgLatt

CntLatt
_—— \quu
Vg
The image of Y consists of those equilogical spaces E = («, —E)

where —gC |#| x || is subidentical, i.e. —gC=|u|.

There is another side to it: the equilogical spaces E = (@, —E)
where —gC | 2| X | 2| is superidentical reflexive.

REqu: the full subcategory on the reflexive equilogical spaces.



The monad X2

(T o
The Sierpinski space Z = is an algebraic lattice.
A(Z)(_)

Consider the self-adjunction Tqu®®~ 1 Equ
A(Z))




The monad X2

T ——
The Sierpinski space Z = _L is an algebraic lattice.
(=)
Consider the self-adjunction Tqu®®~ 1 Equ
(=)
and the induced (strong) monad =2 on Equ
(=) V © SWC
Equ 2 Equ neg:=E SVoSWAP s
IJE = Z(Z(Z(ZE))) ZnZE Z(zE)
Taylor, P.

Foundations for computable topology.
Foundational theories of classical and constructive mathematics
West.Ont.Ser.Phil.Sci. 76 (2011)
Vickers, S.
The double powerlocale and exponentiation: a case study in geometric logic.
Th.Appl.Cat. 12 (2004)
Krivine, J.-L.
Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Arch.Math.Log. 2001
Thielecke, H.
Continuation Semantics and Self-adjointness. Electr.Not.Theor.Comp.Sci. 1997



The monad X2

¥ has a canonical structure of X2-algebra.
Any power ZE of X has the pointwise structure of 2-algebra.

Any algebra for the monad X2 has a canonically induced order from
the retraction pair

na o

A A

5 (ZR)
ida



The monad X2 and soberification

For E = (@, —g) the exponential ZE is (27, —s&)

where, for .« > Scott-continuous,

f —se g if and only if, whenever a —g b, it is f(a) = g(b).

If —g is subreflexive, then —sk is reflexive.
If —g is reflexive, then —se is subreflexive.

For a Tp-space S
e the equilogical space =) is a To-space

e the equilogical space [Z°, X] of X2-homomorphisms
from Z° to X is the soberification of the space S

Bucalo, A., Rosolini, G.
Sobriety for equilogical spaces. Theoret. Comput. Sci. 546 (2014)



What are the algebras for £2?

> (=)

Equ°® 1 Equ
(=)

REQ™ ™ 1 " op,

AlgLant®™ ™ L Algrat

%ﬂ[gLatt&
C
Top, [A REqu




The monad X2 and frames

A frame is a complete lattice such that finite meets distribute over
arbitrary joins:

xA\Y=\/{xaylyeY}.

Frm: the category of frames and frames homomorphisms.

Because the frame structure on X is continuous,
the global section functor lifts along the forgetful functors:

r

Equ® Frm

oo

Equ Set




The monad X2 and frames

F =(|F|, <): a frame
4. the algebraic lattice of ideals of F, i.e.
non-empty, downward-closed, upward-directed subsets of |F]|.
JF IS
(#) the free directed-complete poset on the poset (|F|, <)
(#) the free frame on the bounded distributive lattice (|F|, <).



The monad X2 and frames

F =(|F|, <): a frame
4. the algebraic lattice of ideals of F, i.e.
non-empty, downward-closed, upward-directed subsets of |F]|.

JF is
(#) the free directed-complete poset on the poset (|F|, <)
(#) the free frame on the bounded distributive lattice (|F|, <).

Since . is (#), consider the frame structure map
v: I — F.

Let ~r be the equivalence relation on .r obtained by taking the
kernel pair of the function \/:

I~gJifand only if \fI=\//.
Consider the reflexive equilogical space

L(F) := (JF, ~F).



The monad X2 and frames

F =(|F|, <): a frame
4. the algebraic lattice of ideals of F, i.e.
non-empty, downward-closed, upward-directed subsets of |F]|.
JF IS
(#) the free directed-complete poset on the poset (|F|, <)
(#) the free frame on the bounded distributive lattice (|F|, <).

Since 7 is (é),

r
un2277 m

REqu*

Frames are the X2-algebras on the reflexive equilogical spaces.



Sketch of the proof

Every object E in Equ appears in a quotient of the form

E«——— S &

The equilogical space underlying a X2-algebra z(ZA)LA appears in
a quotient of the form

A———Q— . F

preserves /\ and \/ algebraic frame

M(A) <——T(Q) ———T(¥)



Sketch of the proof

Every object E in Equ appears in a quotient of the form

E«————S &
The equilogical space underlying a X2-algebra z(ZA)LA appears in
a quotient of the form

A———Q— . F

For any frame homomorphism h
MA) «+— Q) —=T(¥)
h
F



Sketch of the proof

Every object E in Equ appears in a quotient of the form
E«—— —Sc .

The equilogical space underlying a X2-algebra z(ZA)LA appears in

a quotient of the form

A———Q— . F

For any frame homomorphism h
rA) +— Q) ~r(#) A
h ?
F L(F)



Sketch of the proof

Every object E in Equ appears in a quotient of the form
E«—— —Sc .

The equilogical space underlying a X2-algebra z(ZA)LA appears in

a quotient of the form

A———Q— . F

For any frame homomorphism h
FA) «— Q) ——T(¥) A
h ?

Fe 7 L(F)



Sketch of the proof

Every object E in Equ appears in a quotient of the form

E«——— S &

The equilogical space underlying a X2-algebra z(ZA)LA appears in
a quotient of the form

A———Q— . F

For any frame homomorphism h

M(A) «—T(Q) = T(F) A
h ?

Fi g L(F)
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Sketch of the proof

Every object E in Equ appears in a quotient of the form

E«——— S &

The equilogical space underlying a X2-algebra z(ZA)LA appears in
a quotient of the form

A———Q— . F

For any frame homomorphism h

MA) Q) — - T(F) A
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Power, J., Robinson, E.P.
Premonoidal categories and notions of computation. Math. Struc. Comput. Sci. 7 (1997)





