Every Sufficiently Cohesive topos is infinitesimally generated

M. Menni
Conicet
and
Universidad Nacional de La Plata

History of the PSSL?

"The PSSL grew out of Dana Scott's seminars for his research students at Oxford. Initially it took place at Oxford, Cambridge and Sussex, usually in buildings left locked and vacant over the weekend. It never asked for or received any official recognition or funding. Lectures were informal." [From G. C. Wraith's webpage]

First Meeting: Oxford, 1-2 May 1976

Friday

14.00: Gonzalo Reyes (Montréal) Coherent logic
16.00: Roy Dyckhoff (St Andrews) Sheaves and bundles

Saturday
09.00: Robert Seely (Cambridge) Hyperdoctrines and proof theory
10.00: Wilfrid Hodges (Bedford College) Uniform reduction for local functors
11.00: Harold Simmons (Aberdeen) j-maps on Heyting algebras
11.45: Mike Fourman (Oxford) Sober spaces in topoi
14.15: Martin Hyland (Oxford) Postprandial discursion
15.15: Peter Johnstone (Cambridge) Some short theorems on Kuratowski-finiteness
16.45: Robin Grayson (Oxford) Finiteness in intuitionistic set theory Sunday
09.30: Gavin Wraith (Sussex) Etale spectrum as a classifying topos
10.30: Julian Cole (Sussex) The bicategory of topoi
11.45: Gonzalo Reyes (Montréal) Negations of coherent formulae

The topos of reversible graphs as a topos of spaces

Let M be the 4-element monoid of endomaps of a 2-element set.

The topos of reversible graphs as a topos of spaces

Let M be the 4-element monoid of endomaps of a 2-element set. If $\widehat{M}=\operatorname{Set}^{{ }^{M o p}}$ and

The topos of reversible graphs as a topos of spaces

Let M be the 4-element monoid of endomaps of a 2-element set. If $\widehat{M}=$ Set $^{M^{\circ p}}$ and $p_{*}=\widehat{M}\left(1,,_{-}\right): \widehat{M} \rightarrow$ Set then

The topos of reversible graphs as a topos of spaces

Let M be the 4-element monoid of endomaps of a 2-element set. If $\widehat{M}=$ Set $^{M^{\circ p}}$ and $p_{*}=\widehat{M}\left(1,{ }_{-}\right): \widehat{M} \rightarrow$ Set then

$$
\begin{aligned}
& \underset{p_{1}-1 p^{*}-1+p_{*} \rightarrow p_{i}^{\prime}}{\widehat{M}} \\
& \text { Set }
\end{aligned}
$$

and

The topos of reversible graphs as a topos of spaces

Let M be the 4-element monoid of endomaps of a 2-element set. If $\widehat{M}=$ Set $^{M^{\circ p}}$ and $p_{*}=\widehat{M}\left(1,{ }_{-}\right): \widehat{M} \rightarrow$ Set then

and

1. $p^{*}, p^{!}$: Set $\rightarrow \widehat{M}$ are fully faithful.

The topos of reversible graphs as a topos of spaces

Let M be the 4-element monoid of endomaps of a 2-element set. If $\widehat{M}=$ Set $^{M^{\circ p}}$ and $p_{*}=\widehat{M}\left(1,,_{-}\right): \widehat{M} \rightarrow$ Set then

and

1. $p^{*}, p^{!}$: Set $\rightarrow \widehat{M}$ are fully faithful.
2. $p_{!} G$ is the set of connected components of the graph G.

The topos of reversible graphs as a topos of spaces

Let M be the 4-element monoid of endomaps of a 2-element set. If $\widehat{M}=\operatorname{Set}^{M^{\circ p}}$ and $p_{*}=\widehat{M}\left(1,,_{-}\right): \widehat{M} \rightarrow$ Set then

and

1. $p^{*}, p^{!}:$Set $\rightarrow \widehat{M}$ are fully faithful.
2. $p_{!} G$ is the set of connected components of the graph G.
3. $p!S$ is the codiscrete graph with nodes in the set S. E.g.:

The topos of reversible graphs as a topos of spaces

Let M be the 4-element monoid of endomaps of a 2-element set. If $\widehat{M}=\operatorname{Set}^{M^{\circ p}}$ and $p_{*}=\widehat{M}\left(1,,_{-}\right): \widehat{M} \rightarrow$ Set then

$$
\begin{aligned}
& \widehat{M}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Set }
\end{aligned}
$$

and

1. $p^{*}, p^{!}$: Set $\rightarrow \widehat{M}$ are fully faithful.
2. $p_{!} G$ is the set of connected components of the graph G.
3. $p!S$ is the codiscrete graph with nodes in the set S. E.g.:

$$
S=2=\{\bullet, \bullet\} \longmapsto \bullet \bullet \bullet \bullet
$$

The topos of reversible graphs as a topos of spaces

Let M be the 4-element monoid of endomaps of a 2-element set. If $\widehat{M}=\operatorname{Set}^{M^{\circ p}}$ and $p_{*}=\widehat{M}\left(1,,_{-}\right): \widehat{M} \rightarrow$ Set then

$$
\begin{aligned}
& \widehat{M} \\
& \stackrel{p_{1}}{p_{1} \dashv p^{*}-\perp p_{*} \rightarrow 1} \downarrow \\
& \text { Set }
\end{aligned}
$$

and

1. $p^{*}, p^{!}$: Set $\rightarrow \widehat{M}$ are fully faithful.
2. $p_{!} G$ is the set of connected components of the graph G.
3. $p!S$ is the codiscrete graph with nodes in the set S. E.g.:

$$
S=2=\{\bullet, \bullet\} \longmapsto \longmapsto \bullet \longleftrightarrow
$$

4. (Nullstellensatz) There is an epi natural transformation $\theta: p_{*} G \rightarrow p_{!} G$. ('Every piece has a point'.)

Leibniz graphs

Definition

An object G in \widehat{M} is called Leibniz if $\theta: p_{*} G \rightarrow p_{!} G$ is an iso.
Intuition:

Leibniz graphs

Definition

An object G in \widehat{M} is called Leibniz if $\theta: p_{*} G \rightarrow p_{!} G$ is an iso.
Intuition: Every piece has exactly one point

Leibniz graphs

Definition

An object G in \widehat{M} is called Leibniz if $\theta: p_{*} G \rightarrow p_{!} G$ is an iso.
Intuition: Every piece has exactly one point

Let $s^{*}: \mathcal{L} \rightarrow \widehat{M}$ be the full subcategory of Leibniz graphs.

Leibniz graphs

Definition

An object G in \widehat{M} is called Leibniz if $\theta: p_{*} G \rightarrow p!G$ is an iso.
Intuition: Every piece has exactly one point

Let $s^{*}: \mathcal{L} \rightarrow \widehat{M}$ be the full subcategory of Leibniz graphs.

Lemma

\mathcal{L} is a topos and $s^{*}: \mathcal{L} \rightarrow \widehat{M}$ is the inverse image of an essential geometric morphism $s: \widehat{M} \rightarrow \mathcal{L}$.

\widehat{M} and \mathcal{L}

$$
\begin{aligned}
& \text { Set }
\end{aligned}
$$

but one important difference:

\widehat{M} and \mathcal{L}

$$
\begin{aligned}
& \text { Set }
\end{aligned}
$$

but one important difference:

$$
p^{!} 2 \text { connected vs } \theta: q_{*} \rightarrow q_{!} \text {iso. }
$$

\widehat{M} and \mathcal{L}

but one important difference:

$$
p^{!} 2 \text { connected vs } \theta: q_{*} \rightarrow q_{!} \text {iso. }
$$

Proposition (Lawvere'07)

The smallest subtopos of \widehat{M} containg $s^{*}: \mathcal{L} \rightarrow \widehat{M}$ is \widehat{M}.

\widehat{M} and \mathcal{L}

but one important difference:

$$
p^{!} 2 \text { connected vs } \theta: q_{*} \rightarrow q_{!} \text {iso. }
$$

Proposition (Lawvere'07)

The smallest subtopos of \widehat{M} containg $s^{*}: \mathcal{L} \rightarrow \widehat{M}$ is \widehat{M}.

Proof.

$\mathcal{L}=\widehat{N}$ for monoid N.

\widehat{M} and \mathcal{L}

but one important difference:

$$
p^{!} 2 \text { connected vs } \theta: q_{*} \rightarrow q_{!} \text {iso. }
$$

Proposition (Lawvere'07)

The smallest subtopos of \widehat{M} containg $s^{*}: \mathcal{L} \rightarrow \widehat{M}$ is \widehat{M}.

Proof.

$\mathcal{L}=\widehat{N}$ for monoid N. Let $L=s^{*}(N(-, *))$.

\widehat{M} and \mathcal{L}

but one important difference:

$$
p^{!} 2 \text { connected vs } \theta: q_{*} \rightarrow q_{!} \text {iso. }
$$

Proposition (Lawvere'07)

The smallest subtopos of \widehat{M} containg $s^{*}: \mathcal{L} \rightarrow \widehat{M}$ is \widehat{M}.

Proof.

$\mathcal{L}=\widehat{N}$ for monoid N. Let $L=s^{*}(N(,, *))$. Observe that $M(-, *)=\bullet \longleftrightarrow$ is a retract of L^{L}.

Axiomatic Cohesion

"An explicit science of cohesion is needed to account for the varied background models for dynamical mathematical theories. Such a science needs to be sufficiently expressive to explain how these backgrounds are so different from other mathematical categories, and also different from one another and yet so united that they can be mutually transformed."
F. W. Lawvere. Axiomatic Cohesion, TAC 2007.

Toposes of spaces

A topos of spaces is

Toposes of spaces

A topos of spaces is a topos \mathcal{E} such that the inclusion $p_{*} \dashv p^{!}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ extends to

Toposes of spaces

A topos of spaces is a topos \mathcal{E} such that the inclusion $p_{*} \dashv p^{!}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ extends to a string of adjoints

Toposes of spaces

A topos of spaces is a topos \mathcal{E} such that the inclusion $p_{*} \dashv p^{!}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ extends to a string of adjoints

1. $\theta: p_{*} \rightarrow p_{!}$is epi and

Toposes of spaces

A topos of spaces is a topos \mathcal{E} such that the inclusion $p_{*} \dashv p^{!}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ extends to a string of adjoints

1. $\theta: p_{*} \rightarrow p_{!}$is epi and
2. $p_{!}: \mathcal{E} \rightarrow \mathcal{E}_{\neg \neg}$ preserves finite products.

Toposes of spaces

A topos of spaces is a topos \mathcal{E} such that the inclusion $p_{*} \dashv p^{!}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ extends to a string of adjoints

1. $\theta: p_{*} \rightarrow p_{!}$is epi and
2. $p_{!}: \mathcal{E} \rightarrow \mathcal{E}_{\neg \neg}$ preserves finite products.
"The two downward functors express the opposition between 'points' and 'pieces'.

Toposes of spaces

A topos of spaces is a topos \mathcal{E} such that the inclusion $p_{*} \dashv p^{!}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ extends to a string of adjoints

$$
\text { 1. } \theta: p_{*} \rightarrow p_{!} \text {is epi and }
$$

$$
\text { 2. } p_{!}: \mathcal{E} \rightarrow \mathcal{E}_{\neg \neg} \text { preserves finite products. }
$$

"The two downward functors express the opposition between 'points' and 'pieces'. The two upward ones oppose pure cohesion ('codiscrete') and pure anti-cohesion ('discrete');

Toposes of spaces

A topos of spaces is a topos \mathcal{E} such that the inclusion $p_{*} \dashv p^{!}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ extends to a string of adjoints

$$
\begin{aligned}
& \mathcal{E}_{\neg ᄀ}
\end{aligned}
$$

1. $\theta: p_{*} \rightarrow p_{!}$is epi and
2. $p_{!}: \mathcal{E} \rightarrow \mathcal{E}_{\neg \neg}$ preserves finite products.
"The two downward functors express the opposition between 'points' and 'pieces'. The two upward ones oppose pure cohesion ('codiscrete') and pure anti-cohesion ('discrete'); these two are indentical in themselves with \mathcal{S} but united by the points concept p_{*} that uniquely places them as full subcategories of \mathcal{E}." [L'07]

Toposes of spaces

A topos of spaces is a topos \mathcal{E} such that the inclusion $p_{*} \dashv p^{!}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ extends to a string of adjoints

$$
\begin{aligned}
& \mathcal{E}_{\neg ᄀ}
\end{aligned}
$$

1. $\theta: p_{*} \rightarrow p_{!}$is epi and
2. $p_{!}: \mathcal{E} \rightarrow \mathcal{E}_{\neg ᄀ}$ preserves finite products.
"The two downward functors express the opposition between 'points' and 'pieces'. The two upward ones oppose pure cohesion ('codiscrete') and pure anti-cohesion ('discrete'); these two are indentical in themselves with \mathcal{S} but united by the points concept p_{*} that uniquely places them as full subcategories of \mathcal{E}." [L'07]

An object X in \mathcal{E} is connected if $p_{!} X=1$.

Toposes of spaces

A topos of spaces is a topos \mathcal{E} such that the inclusion $p_{*} \dashv p^{!}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ extends to a string of adjoints

$$
\begin{aligned}
& \mathcal{E}_{\neg ᄀ}
\end{aligned}
$$

1. $\theta: p_{*} \rightarrow p_{!}$is epi and
2. $p_{!}: \mathcal{E} \rightarrow \mathcal{E}_{\neg ᄀ}$ preserves finite products.
"The two downward functors express the opposition between 'points' and 'pieces'. The two upward ones oppose pure cohesion ('codiscrete') and pure anti-cohesion ('discrete'); these two are indentical in themselves with \mathcal{S} but united by the points concept p_{*} that uniquely places them as full subcategories of \mathcal{E}." [L'07]

An object X in \mathcal{E} is connected if $p_{!} X=1$.
\mathcal{E} will be called sufficiently cohesive if $p!2$ is connected.

Examples

Proposition (Johnstone'11 + Lawvere • Menni'15)

If \mathcal{C} is a small category with terminal and every object has a point then $\mathcal{E}=\widehat{\mathcal{C}}$ is a topos of spaces and $\mathcal{E}_{\neg\urcorner}=$ Set.

Examples

Proposition (Johnstone'11 + Lawvere • Menni'15)

If \mathcal{C} is a small category with terminal and every object has a point then $\mathcal{E}=\widehat{\mathcal{C}}$ is a topos of spaces and $\mathcal{E}_{\neg\urcorner}=$ Set.
In this case, \mathcal{E} is sufficiently cohesive iff some object of \mathcal{C} has at least two points.

For example:

Examples

Proposition (Johnstone'11 + Lawvere • Menni'15)

If \mathcal{C} is a small category with terminal and every object has a point then $\mathcal{E}=\widehat{\mathcal{C}}$ is a topos of spaces and $\mathcal{E}_{\neg \neg}=$ Set.
In this case, \mathcal{E} is sufficiently cohesive iff some object of \mathcal{C} has at least two points.

For example: simplicial sets [EZ], cubical sets [Kan], the classifier of non-trivial boolean algebras [Lawvere], Ball complexes [RoyThesis], many Gaeta toposes (e.g. for the theory of distributive lattices or for that of \mathbb{C}-algebras), ...
Other examples over Set:

Examples

Proposition (Johnstone'11 + Lawvere • Menni'15)

If \mathcal{C} is a small category with terminal and every object has a point then $\mathcal{E}=\widehat{\mathcal{C}}$ is a topos of spaces and $\mathcal{E}_{\neg\urcorner}=$ Set.
In this case, \mathcal{E} is sufficiently cohesive iff some object of \mathcal{C} has at least two points.

For example: simplicial sets [EZ], cubical sets [Kan], the classifier of non-trivial boolean algebras [Lawvere], Ball complexes [RoyThesis], many Gaeta toposes (e.g. for the theory of distributive lattices or for that of \mathbb{C}-algebras), \ldots
Other examples over Set: Zariski topos (over \mathbb{C}), sheaves for sites of monoids of 'tame' endos of $[0,1]$. In this cases, $\mathcal{E}_{\neg\urcorner}=$ Set.

Other examples:

Examples

Proposition (Johnstone'11 + Lawvere • Menni'15)

If \mathcal{C} is a small category with terminal and every object has a point then $\mathcal{E}=\widehat{\mathcal{C}}$ is a topos of spaces and $\mathcal{E}_{\neg \neg}=$ Set.
In this case, \mathcal{E} is sufficiently cohesive iff some object of \mathcal{C} has at least two points.

For example: simplicial sets [EZ], cubical sets [Kan], the classifier of non-trivial boolean algebras [Lawvere], Ball complexes [RoyThesis], many Gaeta toposes (e.g. for the theory of distributive lattices or for that of \mathbb{C}-algebras), \ldots
Other examples over Set: Zariski topos (over \mathbb{C}), sheaves for sites of monoids of 'tame' endos of $[0,1]$. In this cases, $\mathcal{E}_{\neg \neg}=$ Set.

Other examples: Variants of Zariski (over other fields, say \mathbb{R}) where $\mathcal{E}_{\neg ᄀ} \neq$ Set.

Leibniz objects

Let \mathcal{E} be a topos of spaces.
Definition
An object X in \mathcal{E} is called Leibniz if $\theta: p_{*} X \rightarrow p_{!} X$ is an iso.
Intuition: Every piece has exactly one point

Leibniz objects

Let \mathcal{E} be a topos of spaces.

Definition

An object X in \mathcal{E} is called Leibniz if $\theta: p_{*} X \rightarrow p_{!} X$ is an iso.
Intuition: Every piece has exactly one point
Let $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$ be the full subcategory of Leibniz objects.

Leibniz objects

Let \mathcal{E} be a topos of spaces.

Definition

An object X in \mathcal{E} is called Leibniz if $\theta: p_{*} X \rightarrow p_{!} X$ is an iso.
Intuition: Every piece has exactly one point
Let $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$ be the full subcategory of Leibniz objects.

Proposition (Most of it in Lawvere'07)

\mathcal{L} is a topos and $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$ is the inverse image of an essential geometric morphism $s: \mathcal{E} \rightarrow \mathcal{L}$.

Leibniz objects

Let \mathcal{E} be a topos of spaces.

Definition

An object X in \mathcal{E} is called Leibniz if $\theta: p_{*} X \rightarrow p_{!} X$ is an iso.
Intuition: Every piece has exactly one point
Let $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$ be the full subcategory of Leibniz objects.

Proposition (Most of it in Lawvere'07)

\mathcal{L} is a topos and $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$ is the inverse image of an essential geometric morphism $s: \mathcal{E} \rightarrow \mathcal{L}$.

Definition

\mathcal{E} is said to be infinitesimally generated if the smallest subtopos containing $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$ is the whole of \mathcal{E}.

The main result

Let \mathcal{E} be a topos of spaces. Recall,

The main result

Let \mathcal{E} be a topos of spaces. Recall,
\mathcal{E} is said to be infinitesimally generated if the smallest subtopos containing $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$ is the whole of \mathcal{E}.

The main result

Let \mathcal{E} be a topos of spaces. Recall,
\mathcal{E} is said to be infinitesimally generated if the smallest subtopos containing $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$ is the whole of \mathcal{E}.
\mathcal{E} is said to be sufficiently cohesive if $p^{!} 2$ is connected.

The main result

Let \mathcal{E} be a topos of spaces. Recall,
\mathcal{E} is said to be infinitesimally generated if the smallest subtopos containing $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$ is the whole of \mathcal{E}.
\mathcal{E} is said to be sufficiently cohesive if $p^{!} 2$ is connected.
Theorem
If \mathcal{E} is sufficiently cohesive then it is infinitesimally generated.

Weak generation by a full subcategory

A topos \mathcal{E} is weakly generated by a full subcategory $\mathcal{C} \rightarrow \mathcal{E}$ if the smallest subtopos containing $\mathcal{C} \rightarrow \mathcal{E}$ coincides with \mathcal{E}.

Weak generation by a full subcategory

A topos \mathcal{E} is weakly generated by a full subcategory $\mathcal{C} \rightarrow \mathcal{E}$ if the smallest subtopos containing $\mathcal{C} \rightarrow \mathcal{E}$ coincides with \mathcal{E}.

1. Every topos is weakly generated by itself.

Weak generation by a full subcategory

A topos \mathcal{E} is weakly generated by a full subcategory $\mathcal{C} \rightarrow \mathcal{E}$ if the smallest subtopos containing $\mathcal{C} \rightarrow \mathcal{E}$ coincides with \mathcal{E}.

1. Every topos is weakly generated by itself.
2. A topos of spaces \mathcal{E} is infinitesimally generated iff it is weakly generated by $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$.

Weak generation by a full subcategory

A topos \mathcal{E} is weakly generated by a full subcategory $\mathcal{C} \rightarrow \mathcal{E}$ if the smallest subtopos containing $\mathcal{C} \rightarrow \mathcal{E}$ coincides with \mathcal{E}.

1. Every topos is weakly generated by itself.
2. A topos of spaces \mathcal{E} is infinitesimally generated iff it is weakly generated by $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$.
3. Let \mathcal{C} be a small category. The topos $\widehat{\mathcal{C}}$ need not be weakly generated by $Y: \mathcal{C} \rightarrow \widehat{\mathcal{C}}$.

Weak generation by a full subcategory

A topos \mathcal{E} is weakly generated by a full subcategory $\mathcal{C} \rightarrow \mathcal{E}$ if the smallest subtopos containing $\mathcal{C} \rightarrow \mathcal{E}$ coincides with \mathcal{E}.

1. Every topos is weakly generated by itself.
2. A topos of spaces \mathcal{E} is infinitesimally generated iff it is weakly generated by $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$.
3. Let \mathcal{C} be a small category. The topos $\widehat{\mathcal{C}}$ need not be weakly generated by $Y: \mathcal{C} \rightarrow \widehat{\mathcal{C}}$.
If the subcategory $\mathcal{C} \rightarrow \mathcal{E}$ consists of only one object then we say that \mathcal{E} is weakly generated by that object.

Weak generation by a full subcategory

A topos \mathcal{E} is weakly generated by a full subcategory $\mathcal{C} \rightarrow \mathcal{E}$ if the smallest subtopos containing $\mathcal{C} \rightarrow \mathcal{E}$ coincides with \mathcal{E}.

1. Every topos is weakly generated by itself.
2. A topos of spaces \mathcal{E} is infinitesimally generated iff it is weakly generated by $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$.
3. Let \mathcal{C} be a small category. The topos $\widehat{\mathcal{C}}$ need not be weakly generated by $Y: \mathcal{C} \rightarrow \widehat{\mathcal{C}}$.
If the subcategory $\mathcal{C} \rightarrow \mathcal{E}$ consists of only one object then we say that \mathcal{E} is weakly generated by that object.
4. Every topos is weakly generated by Ω.

Lemma

Weak generation by a full subcategory

A topos \mathcal{E} is weakly generated by a full subcategory $\mathcal{C} \rightarrow \mathcal{E}$ if the smallest subtopos containing $\mathcal{C} \rightarrow \mathcal{E}$ coincides with \mathcal{E}.

1. Every topos is weakly generated by itself.
2. A topos of spaces \mathcal{E} is infinitesimally generated iff it is weakly generated by $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$.
3. Let \mathcal{C} be a small category. The topos $\widehat{\mathcal{C}}$ need not be weakly generated by $Y: \mathcal{C} \rightarrow \widehat{\mathcal{C}}$.
If the subcategory $\mathcal{C} \rightarrow \mathcal{E}$ consists of only one object then we say that \mathcal{E} is weakly generated by that object.
4. Every topos is weakly generated by Ω.

Lemma

If $\Omega \mapsto J^{J}$ then \mathcal{E} is weakly generated by J.

Proof.

Weak generation by a full subcategory

A topos \mathcal{E} is weakly generated by a full subcategory $\mathcal{C} \rightarrow \mathcal{E}$ if the smallest subtopos containing $\mathcal{C} \rightarrow \mathcal{E}$ coincides with \mathcal{E}.

1. Every topos is weakly generated by itself.
2. A topos of spaces \mathcal{E} is infinitesimally generated iff it is weakly generated by $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$.
3. Let \mathcal{C} be a small category. The topos $\widehat{\mathcal{C}}$ need not be weakly generated by $Y: \mathcal{C} \rightarrow \widehat{\mathcal{C}}$.
If the subcategory $\mathcal{C} \rightarrow \mathcal{E}$ consists of only one object then we say that \mathcal{E} is weakly generated by that object.
4. Every topos is weakly generated by Ω.

Lemma

If $\Omega \mapsto J^{J}$ then \mathcal{E} is weakly generated by J.

Proof.

Since Ω is injective, it is a retract of J^{J}.

Sketch of proof of main result

Let \mathcal{E} be a topos of spaces, so that:

Sketch of proof of main result

Let \mathcal{E} be a topos of spaces, so that:

Theorem
If \mathcal{E} is sufficiently cohesive then it is infinitesimally generated.

Sketch of proof of main result

Let \mathcal{E} be a topos of spaces, so that:

Theorem

If \mathcal{E} is sufficiently cohesive then it is infinitesimally generated.
Let $T: 1 \rightarrow J$ be the classifier of $\neg \neg$-dense monos in \mathcal{E}.

Sketch of proof of main result

Let \mathcal{E} be a topos of spaces, so that:

Theorem

If \mathcal{E} is sufficiently cohesive then it is infinitesimally generated.
Let $T: 1 \rightarrow J$ be the classifier of $\neg \neg$-dense monos in \mathcal{E}.
Since $\top: 1 \rightarrow J$ is dense, $p_{*} \top: p_{*} 1 \rightarrow p_{*} J$ is an iso.

Sketch of proof of main result

Let \mathcal{E} be a topos of spaces, so that:

Theorem

If \mathcal{E} is sufficiently cohesive then it is infinitesimally generated.
Let $T: 1 \rightarrow J$ be the classifier of $\neg \neg$-dense monos in \mathcal{E}.
Since $\top: 1 \rightarrow J$ is dense, $p_{*} \top: p_{*} 1 \rightarrow p_{*} J$ is an iso.
It follows that $\theta_{J}: 1=p_{*} J \rightarrow p_{!} J$ is an iso. That is, J is Leibniz.

Sketch of proof of main result

Let \mathcal{E} be a topos of spaces, so that:

Theorem

If \mathcal{E} is sufficiently cohesive then it is infinitesimally generated.
Let $T: 1 \rightarrow J$ be the classifier of $\neg \neg$-dense monos in \mathcal{E}.
Since $\top: 1 \rightarrow J$ is dense, $p_{*} \top: p_{*} 1 \rightarrow p_{*} J$ is an iso.
It follows that $\theta_{J}: 1=p_{*} J \rightarrow p_{!} J$ is an iso. That is, J is Leibniz.
If \mathcal{E} is sufficiently cohesive then $\Omega \longmapsto J^{J}$.

A slightly different problem

Let \mathcal{E} be a topos.

A slightly different problem

Let \mathcal{E} be a topos.
Let $f^{*} \dashv f_{*}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ be its double negation subtopos.

A slightly different problem

Let \mathcal{E} be a topos.
Let $f^{*} \dashv f_{*}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ be its double negation subtopos.
Let $\top: 1 \rightarrow J$ be the associated classifier of dense monos

A slightly different problem

Let \mathcal{E} be a topos.
Let $f^{*} \dashv f_{*}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ be its double negation subtopos.
Let $\top: 1 \rightarrow J$ be the associated classifier of dense monos
What conditions on $\top: 1 \rightarrow J$ guarantee that $\Omega \mapsto J^{J}$?

A slightly different problem

Let \mathcal{E} be a topos.
Let $f^{*} \dashv f_{*}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ be its double negation subtopos.
Let $\top: 1 \rightarrow J$ be the associated classifier of dense monos
What conditions on $\top: 1 \rightarrow J$ guarantee that $\Omega \mapsto J^{J}$?

Definition

A pointed object $T: 1 \rightarrow J$ is called substantial if

A slightly different problem

Let \mathcal{E} be a topos.
Let $f^{*} \dashv f_{*}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ be its double negation subtopos.
Let $\top: 1 \rightarrow J$ be the associated classifier of dense monos
What conditions on $\top: 1 \rightarrow J$ guarantee that $\Omega \mapsto J^{J}$?

Definition

A pointed object $\top: 1 \rightarrow J$ is called substantial if for any object X it holds that:

A slightly different problem

Let \mathcal{E} be a topos.
Let $f^{*} \dashv f_{*}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ be its double negation subtopos.
Let $\top: 1 \rightarrow J$ be the associated classifier of dense monos
What conditions on $\top: 1 \rightarrow J$ guarantee that $\Omega \mapsto J^{J}$?

Definition

A pointed object $T: 1 \rightarrow J$ is called substantial if for any object X it holds that: if

$$
X \times 1 \xrightarrow{i d \times T} X \times J
$$

is an iso then

A slightly different problem

Let \mathcal{E} be a topos.
Let $f^{*} \dashv f_{*}: \mathcal{E}_{\neg\urcorner} \rightarrow \mathcal{E}$ be its double negation subtopos.
Let $\top: 1 \rightarrow J$ be the associated classifier of dense monos
What conditions on $\top: 1 \rightarrow J$ guarantee that $\Omega \mapsto J^{J}$?

Definition

A pointed object $T: 1 \rightarrow J$ is called substantial if for any object X it holds that: if

$$
X \times 1 \xrightarrow{i d \times T} X \times J
$$

is an iso then X is initial.

Substantial pointed objects

A pointed object $\top: 1 \rightarrow J$ is called substantial if for any object X it holds that: if

$$
X \times 1 \xrightarrow{i d \times T} X \times J
$$

is an iso then X is initial.

Substantial pointed objects

A pointed object $\top: 1 \rightarrow J$ is called substantial if for any object X it holds that: if

$$
X \times 1 \xrightarrow{i d \times T} X X \times J
$$

is an iso then X is initial.

Proposition

Let \mathcal{E} be a topos. If the classifier $T: 1 \rightarrow J$ of $\neg \neg$-dense monos is substantial then

Substantial pointed objects

A pointed object $\top: 1 \rightarrow J$ is called substantial if for any object X it holds that: if

$$
X \times 1 \xrightarrow{i d \times T} X X \times J
$$

is an iso then X is initial.

Proposition

Let \mathcal{E} be a topos. If the classifier $T: 1 \rightarrow J$ of $\neg \neg$-dense monos is substantial then \mathcal{E} is weakly generated by J.

Substantial pointed objects

A pointed object $\top: 1 \rightarrow J$ is called substantial if for any object X it holds that: if

$$
X \times 1 \xrightarrow{i d \times T} X X \times J
$$

is an iso then X is initial.

Proposition

Let \mathcal{E} be a topos. If the classifier $\top: 1 \rightarrow J$ of $\neg \neg$-dense monos is substantial then \mathcal{E} is weakly generated by J.

Proof.

Consider the disjoint monos $1 \xrightarrow{\langle T, T\rangle} \Omega \times J \stackrel{\perp \times J}{\rightleftarrows} 1 \times J$.

Substantial pointed objects

A pointed object $\top: 1 \rightarrow J$ is called substantial if for any object X it holds that: if

$$
X \times 1 \xrightarrow{i d \times T} X \times J
$$

is an iso then X is initial.

Proposition

Let \mathcal{E} be a topos. If the classifier $\top: 1 \rightarrow J$ of $\neg \neg$-dense monos is substantial then \mathcal{E} is weakly generated by J.

Proof.

Consider the disjoint monos $1 \xrightarrow{\langle T, T\rangle} \Omega \times J \stackrel{\perp \times J}{\rightleftarrows} 1 \times J$.
Then $1 \xrightarrow{p_{*} \top} p_{*} \Omega \stackrel{p_{*} \perp}{\leftarrow} 1$ is a coproduct diagram in $\mathcal{E}_{\neg ᄀ}$.

Substantial pointed objects

A pointed object $\top: 1 \rightarrow J$ is called substantial if for any object X it holds that: if

$$
X \times 1 \xrightarrow{i d \times T} X \times J
$$

is an iso then X is initial.

Proposition

Let \mathcal{E} be a topos. If the classifier $\top: 1 \rightarrow J$ of $\neg \neg$-dense monos is substantial then \mathcal{E} is weakly generated by J.

Proof.

Consider the disjoint monos $1 \xrightarrow{\langle T, T\rangle} \Omega \times J \stackrel{\perp \times J}{\rightleftarrows} 1 \times J$.
Then $1 \xrightarrow{p_{*} \top} p_{*} \Omega \stackrel{p_{*} \perp}{\gtrless} 1$ is a coproduct diagram in $\mathcal{E}_{\neg\urcorner .}$.
Then the map $1+(1 \times J) \xrightarrow{[\langle T, T\rangle, \perp \times J]} \Omega \times J$ is $\neg \neg$-dense.

Substantial pointed objects

A pointed object $\top: 1 \rightarrow J$ is called substantial if for any object X it holds that: if

$$
X \times 1 \xrightarrow{i d \times T} X \times J
$$

is an iso then X is initial.

Proposition

Let \mathcal{E} be a topos. If the classifier $T: 1 \rightarrow J$ of $\neg \neg$-dense monos is substantial then \mathcal{E} is weakly generated by J.

Proof.

Consider the disjoint monos $1 \xrightarrow{\langle T, T\rangle} \Omega \times J \stackrel{\perp \times J}{\rightleftarrows} 1 \times J$.
Then $1 \xrightarrow{p_{*} \top} p_{*} \Omega \stackrel{p_{*} \perp}{\gtrless} 1$ is a coproduct diagram in $\mathcal{E}_{\neg\urcorner .}$.
Then the map $1+(1 \times J) \xrightarrow{[\langle T, T\rangle, \perp \times J]} \Omega \times J$ is $\neg \neg$-dense.
Let $\chi: \Omega \times J \rightarrow J$ be its classiying map.

Substantial pointed objects

A pointed object $\top: 1 \rightarrow J$ is called substantial if for any object X it holds that: if

$$
X \times 1 \xrightarrow{i d \times T} X \times J
$$

is an iso then X is initial.

Proposition

Let \mathcal{E} be a topos. If the classifier $T: 1 \rightarrow J$ of $\neg \neg$-dense monos is substantial then \mathcal{E} is weakly generated by J.

Proof.

Consider the disjoint monos $1 \xrightarrow{\langle T, T\rangle} \Omega \times J \stackrel{\perp \times J}{\rightleftarrows} 1 \times J$.
Then $1 \xrightarrow{p_{*} \top} p_{*} \Omega \stackrel{p_{*} \perp}{\leftarrow} 1$ is a coproduct diagram in $\mathcal{E}_{\neg\urcorner\urcorner}$.
Then the map $1+(1 \times J) \xrightarrow{[\langle T, T\rangle, \perp \times J]} \Omega \times J$ is $\neg \neg$-dense. Let $\chi: \Omega \times J \rightarrow J$ be its classiying map.
Substantiality implies that the transposition $\Omega \rightarrow J^{J}$ is mono.

A concrete illustration

Corollary

Let \mathcal{C} be a small category and let K be the dense Grothendieck topology. The classifer of $\neg \neg$-dense monos is substantial iff

A concrete illustration

Corollary

Let \mathcal{C} be a small category and let K be the dense Grothendieck topology. The classifer of $\neg \neg$-dense monos is substantial iff for every object C there exists a map $g: D \rightarrow C$ such that $K D$ is not trivial.

A concrete illustration

Corollary

Let \mathcal{C} be a small category and let K be the dense Grothendieck topology. The classifer of $\neg \neg$-dense monos is substantial iff for every object C there exists a map $g: D \rightarrow C$ such that $K D$ is not trivial.

Exercise

Why do the above equivalent conditions hold if \mathcal{C} has terminal object, every object has a point and some object has at least two distinct points?

A final look at the main result

Proposition

Let \mathcal{E} be a topos. If the classifier $T: 1 \rightarrow J$ of $\neg \neg$-dense monos is substantial then \mathcal{E} is weakly generated by J.

A final look at the main result

Proposition

Let \mathcal{E} be a topos. If the classifier $T: 1 \rightarrow J$ of $\neg \neg$-dense monos is substantial then \mathcal{E} is weakly generated by J.

Theorem

If \mathcal{E} is sufficiently cohesive then it is infinitesimally generated.

A final look at the main result

Proposition

Let \mathcal{E} be a topos. If the classifier $T: 1 \rightarrow J$ of $\neg \neg$-dense monos is substantial then \mathcal{E} is weakly generated by J.

Theorem

If \mathcal{E} is sufficiently cohesive then it is infinitesimally generated.

Proof.

The classifier J of $\neg \neg$-dense monos is Leibniz

A final look at the main result

Proposition

Let \mathcal{E} be a topos. If the classifier $T: 1 \rightarrow J$ of $\neg \neg$-dense monos is substantial then \mathcal{E} is weakly generated by J.

Theorem

If \mathcal{E} is sufficiently cohesive then it is infinitesimally generated.

Proof.

The classifier J of $\neg \neg$-dense monos is Leibniz Sufficient cohesion implies that $\top: 1 \rightarrow J$ is substantial.

Bibliography I

圊 P．T．Johnstone．
Remarks on Punctual Local Connectedness．
TAC， 2011.
围 F．W．Lawvere．Axiomatic Cohesion．
TAC， 2007.
國 F．W．Lawvere and M．Menni．Internal Choice holds in the discrete part of every cohesive topos satisfying Stable Connected Codiscreteness．
TAC， 2007.

