The Gabriel dimension of a module M has nothing to do with the category $\mathcal{M}od$ -R in which it lives.

It is determined by the lattice Sub(M) of its submodules.

The construction of this dimension is a particular example of a more general lattice theoretic technique.

There are other application of this method, such as the not so well known Boyle dimension of a module.

There are also non-module applications, such as the Cantor-Bendixson rank of a topological space, and more generally of a frame.

1

The two module examples

We work with the family $\mathbb{B}(R)$ of 'basic' classes of modules. We use certain quotients, localizations, of \mathcal{M} od-R

\mathcal{M} od- R/\mathcal{T}

each of which is determined by a

Division class $= \mathcal{T} =$ Hereditary torsion class $\mathbb{B}(R)$ carries a divisional closure. $\mathbb{DVS} : \mathbb{B}(R) \longrightarrow \mathbb{B}(R)$ To measure relative to \mathcal{T} we select a larger class of modules (Gabriel) \mathcal{T} -simple \mathcal{S} \mathcal{T} -complemented (Boyle) and extend to a division class to produce a closure operation. $\mathbb{GAB} = \mathbb{DVS} \circ \mathbb{SMP}$ $\mathbb{DVS} \circ \mathbb{CMP} = \mathbb{BOY}$ We iterate to produce the measuring filtration relative to \mathcal{T} .

$${\mathcal{T}}_0 = {\mathcal{T}} \subseteq {\mathcal{T}}_1 \subseteq {\mathcal{T}}_2 \subseteq \cdots \subseteq {\mathcal{T}}_\alpha \subseteq \cdots$$

Global inflators and closure operations

A G-inflator inf_{\bullet} attaches to each module M an inflator inf_M on Sub(M). For example, the socle operator done properly. Such inflators must interact with morphism $N \longrightarrow M$ sensibly. There are correspondences with more standard gadgets.

These are easier to deal with than the standard gadgets.

 $G-inflator = global pre-nucleus \qquad G-closure = global nucleus$

This idea was produced by K.L. Chew in 1965.

Idioms

An idiom is a complete lattice Λ such that

$$a \land \bigvee X = \bigvee \{a \land x \mid x \in X\}$$

for all *directed* subsets X.

Egs. For a module M the lattice Sub(M) is a modular idiom. A frame is a distributive idiom.

Each complete boolean algebra is a complemented frame.

Each appropriate quotient of Λ is given by a nucleus, a closure operation j such that

$$j(a \wedge b) = j(a) \wedge j(b)$$

By iterating a pre-nucleus (a non-idempotent nucleus) we generate a nucleus.

The length of the iteration is some kind of measure.

Idiom gadgetry

We work with the family $\mathbb{B}(\Lambda)$ of 'basic' sets of intervals. To produce a quotient of Λ we collapse a basic set \mathcal{B} , and more. A division set \mathcal{D} corresponds to a quotient.

j	Nucleus	\longleftrightarrow	Division set	\mathcal{D}
inf	Pre-nucleus	\longleftrightarrow	Supine set	${\mathcal S}$

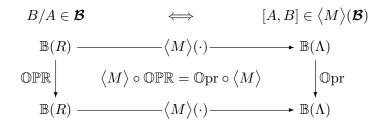
Each basic set \mathcal{B} has a divisional closure $\mathbb{D}vs(\mathcal{B})$

Each division set \mathcal{D} has larger supine set $\operatorname{Smp}(\mathcal{D})$ $\operatorname{Cmp}(\mathcal{D})$ These give $\operatorname{Gab} = \mathbb{D}vs \circ \operatorname{Smp}$ $\mathbb{B}oy = \mathbb{D}vs \circ \mathbb{C}mp$ which we can iterate to produce measures of Λ .

We can also work with pre-nuclei. When j corresponds to \mathcal{D}

The slicing trick

We slice a class $\mathcal{B} \in \mathbb{B}(R)$ of modules by a module M to produce a set $\mathbb{B}(\Lambda)$ of intervals of $\Lambda = Sub(M)$.



 \mathbb{DVS} , \mathbb{Dvs} , \mathbb{SMP} , \mathbb{Smp} , \mathbb{CMP} , \mathbb{Cmp} , \mathbb{GAB} , \mathbb{Gab} , \mathbb{BOY} , \mathbb{Boy} For \mathcal{T} , M with $\mathcal{D} = \langle M \rangle(\mathcal{T})$ $soc_{\mathcal{T},M} = soc_{\mathcal{D}} \ cbd_{\mathcal{T},M} = cbd_{\mathcal{D}}$

Various measuring gadgets can be produced in a lattice theoretic context, and then the measure of a module is a particular case of this general version.