Completeness of infinitary intuitionistic logics

Christian Espíndola

Stockholm University

May 21, 2016

Christian Espíndola (Stockholm University) Completeness of infinitary intuitionistic logics

• Described and studied extensively by Carol Karp (1964)

- Described and studied extensively by Carol Karp (1964)
- The language $\mathcal{L}_{\kappa,\kappa}$ is a two-fold generalization of the finitary case.

- Described and studied extensively by Carol Karp (1964)
- The language $\mathcal{L}_{\kappa,\kappa}$ is a two-fold generalization of the finitary case. Let ϕ , $\{\phi_{\alpha} : \alpha < \gamma\}$ (for each $\gamma < \kappa$) be formulas. Then the following are also formulas:

- Described and studied extensively by Carol Karp (1964)
- The language $\mathcal{L}_{\kappa,\kappa}$ is a two-fold generalization of the finitary case. Let ϕ , $\{\phi_{\alpha} : \alpha < \gamma\}$ (for each $\gamma < \kappa$) be formulas. Then the following are also formulas:

1

 $\bigwedge_{\alpha < \gamma} \phi_{\alpha}, \qquad \bigvee_{\alpha < \gamma} \phi_{\alpha}$

2

- Described and studied extensively by Carol Karp (1964)
- The language $\mathcal{L}_{\kappa,\kappa}$ is a two-fold generalization of the finitary case. Let ϕ , $\{\phi_{\alpha} : \alpha < \gamma\}$ (for each $\gamma < \kappa$) be formulas. Then the following are also formulas:

 $\forall \mathbf{x}_{\gamma} \phi$,

$$\bigwedge_{\alpha < \gamma} \phi_{\alpha}, \qquad \bigvee_{\alpha < \gamma} \phi_{\alpha}$$

 $\exists \mathbf{x}_{\gamma} \phi$

(where $\mathbf{x}_{\gamma} = \{x_{\alpha} : \alpha < \gamma\}$)

• Hilbert-style system enough to derive a completeness theorem for Set-valued models. Featuring the following axiom schemata, for each $\gamma < \kappa$:

- Hilbert-style system enough to derive a completeness theorem for Set-valued models. Featuring the following axiom schemata, for each $\gamma < \kappa$:
 - Classical distributivity:

$$\bigwedge_{i<\gamma}\bigvee_{j<\gamma}\psi_{ij}\to\bigvee_{f\in\gamma^{\gamma}}\bigwedge_{i<\gamma}\psi_{if(i)}$$

- Hilbert-style system enough to derive a completeness theorem for Set-valued models. Featuring the following axiom schemata, for each $\gamma < \kappa$:
 - Classical distributivity:

$$\bigwedge_{i<\gamma}\bigvee_{j<\gamma}\psi_{ij}\rightarrow\bigvee_{f\in\gamma^{\gamma}}\bigwedge_{i<\gamma}\psi_{if(i)}$$

2 Classical dependent choice up to γ (DC_{γ}):

$$\bigwedge_{\alpha < \gamma} \forall_{\beta < \alpha} \mathbf{x}_{\beta} \exists \mathbf{x}_{\alpha} \psi_{\alpha} \to \exists_{\alpha < \gamma} \mathbf{x}_{\alpha} \bigwedge_{\alpha < \gamma} \psi_{\alpha}$$

(for disjoint \mathbf{x}_{α} and such that no variable in \mathbf{x}_{α} is free in ψ_{β} for $\beta < \alpha$).

- Hilbert-style system enough to derive a completeness theorem for Set-valued models. Featuring the following axiom schemata, for each $\gamma < \kappa$:
 - Classical distributivity:

$$\bigwedge_{i < \gamma} \bigvee_{j < \gamma} \psi_{ij} \to \bigvee_{f \in \gamma^{\gamma}} \bigwedge_{i < \gamma} \psi_{if(i)}$$

2 Classical dependent choice up to γ (DC_{γ}):

$$\bigwedge_{\alpha < \gamma} \forall_{\beta < \alpha} \mathbf{x}_{\beta} \exists \mathbf{x}_{\alpha} \psi_{\alpha} \to \exists_{\alpha < \gamma} \mathbf{x}_{\alpha} \bigwedge_{\alpha < \gamma} \psi_{\alpha}$$

(for disjoint \mathbf{x}_{α} and such that no variable in \mathbf{x}_{α} is free in ψ_{β} for $\beta < \alpha$).

• Completeness theorem proved using Boolean algebraic methods and thus relies heavily in the use of the excluded middle axiom.

These are a generalization of regular theories admitting the use of infinitary conjunction and infinitary existential quantification.

These are a generalization of regular theories admitting the use of infinitary conjunction and infinitary existential quantification. Makkai identified the correct type of categories corresponding to κ -regular logic, the so called κ -regular categories.

These are a generalization of regular theories admitting the use of infinitary conjunction and infinitary existential quantification. Makkai identified the correct type of categories corresponding to κ -regular logic, the so called κ -regular categories.

Definition (Makkai)

A κ -regular category is a regular category that has κ -limits (i.e., limits of κ -small diagrams) and satisfies further an exactness property of Set corresponding to the axioms DC_{γ} of dependent choice up to γ for each $\gamma < \kappa$.

• the restriction $\Gamma|_{\beta}$ is a limit diagram for every limit ordinal β .

• the restriction $\Gamma|_{\beta}$ is a limit diagram for every limit ordinal β .

We say that the morphisms $h_{\beta,\alpha}$ compose transfinitely, and take the limit projection $f_{\beta,0}$ to be the transfinite composite of $h_{\alpha+1,\alpha}$ for $\alpha < \beta$.

• the restriction $\Gamma|_{\beta}$ is a limit diagram for every limit ordinal β .

We say that the morphisms $h_{\beta,\alpha}$ compose transfinitely, and take the limit projection $f_{\beta,0}$ to be the transfinite composite of $h_{\alpha+1,\alpha}$ for $\alpha < \beta$. Then the exactness condition reads that if all maps $h_{\beta,\alpha}$ are epimorphisms, so is $f_{\beta,0}$. Loosely speaking we say that the transfinite composition of epimorphisms is itself an epimorphism.

Goals:

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Goals:

• Generalize κ -regular categories to κ -coherent categories, adding κ -disjunctions to the language

Goals:

- Generalize κ -regular categories to κ -coherent categories, adding κ -disjunctions to the language
- **②** Investigate infinitary-first-order categorical logic by coding κ -first-order theories via Morleyization

Goals:

- Generalize κ -regular categories to κ -coherent categories, adding κ -disjunctions to the language

Connections with large cardinal axioms:

Goals:

- Generalize κ -regular categories to κ -coherent categories, adding κ -disjunctions to the language

Connections with large cardinal axioms:

() The distributivity property suggests to study the case of inaccessible κ

Goals:

- Generalize κ -regular categories to κ -coherent categories, adding κ -disjunctions to the language

Connections with large cardinal axioms:

- **(**) The distributivity property suggests to study the case of inaccessible κ
- A Set-valued completeness theorem for κ-coherent logic forces κ to be a weakly compact cardinal.

Goals:

- Generalize κ -regular categories to κ -coherent categories, adding κ -disjunctions to the language

Connections with large cardinal axioms:

- **(**) The distributivity property suggests to study the case of inaccessible κ
- A Set-valued completeness theorem for κ-coherent logic forces κ to be a weakly compact cardinal.

Consider a tree of height κ and levels of size less than κ , and a language containing one propositional variable P_a for every node a in the tree. The theory of a branch is axiomatized as follows:

Goals:

- Generalize κ -regular categories to κ -coherent categories, adding κ -disjunctions to the language

Connections with large cardinal axioms:

- **(**) The distributivity property suggests to study the case of inaccessible κ
- A Set-valued completeness theorem for κ-coherent logic forces κ to be a weakly compact cardinal.

Consider a tree of height κ and levels of size less than κ , and a language containing one propositional variable P_a for every node a in the tree. The theory of a branch is axiomatized as follows:

• $\top \vdash \bigvee_{a \in L_{\alpha}} P_a$ for each $\alpha < \kappa$, where L_{α} is set of all nodes at level α

Goals:

- Generalize κ -regular categories to κ -coherent categories, adding κ -disjunctions to the language

Connections with large cardinal axioms:

- **(**) The distributivity property suggests to study the case of inaccessible κ
- **2** A *Set*-valued completeness theorem for κ -coherent logic forces κ to be a weakly compact cardinal.

Consider a tree of height κ and levels of size less than κ , and a language containing one propositional variable P_a for every node a in the tree. The theory of a branch is axiomatized as follows:

• $\top \vdash \bigvee_{a \in L_{\alpha}} P_{a}$ for each $\alpha < \kappa$, where L_{α} is set of all nodes at level α • $P_{a} \land P_{b} \vdash \bot$ for each pair $a \neq b \in L_{\alpha}$ and each $\alpha < \kappa$

Goals:

- Generalize κ -regular categories to κ -coherent categories, adding κ -disjunctions to the language

Connections with large cardinal axioms:

- **(**) The distributivity property suggests to study the case of inaccessible κ
- A Set-valued completeness theorem for κ-coherent logic forces κ to be a weakly compact cardinal.

Consider a tree of height κ and levels of size less than κ , and a language containing one propositional variable P_a for every node a in the tree. The theory of a branch is axiomatized as follows:

- $\top \vdash \bigvee_{a \in L_{\alpha}} P_a$ for each $\alpha < \kappa$, where L_{α} is set of all nodes at level α
- $P_a \land P_b \vdash \bot$ for each pair $a \neq b \in L_{\alpha}$ and each $\alpha < \kappa$
- $P_a \vdash P_b$ for each pair a, b such that a is a successor of b

 Under the assumption of completeness, every such tree has a cofinal branch

- Under the assumption of completeness, every such tree has a cofinal branch
- **②** This is known as the tree property, and, for inaccessible κ , it is equivalent to κ being a weakly compact cardinal, a relatively mild large cardinal assumption beyond inaccessibility.

- Under the assumption of completeness, every such tree has a cofinal branch
- This is known as the tree property, and, for inaccessible κ, it is equivalent to κ being a weakly compact cardinal, a relatively mild large cardinal assumption beyond inaccessibility.

We can show, on the other hand, that the hypothesis of weak compactness is enough to derive a completeness theorem for κ -coherent theories of cardinality at most κ with respect to *Set*-valued models

- Under the assumption of completeness, every such tree has a cofinal branch
- This is known as the tree property, and, for inaccessible κ, it is equivalent to κ being a weakly compact cardinal, a relatively mild large cardinal assumption beyond inaccessibility.

We can show, on the other hand, that the hypothesis of weak compactness is enough to derive a completeness theorem for κ -coherent theories of cardinality at most κ with respect to Set-valued models κ -coherent logic then extends geometric logic, for which a completeness theorem in terms of Set-valued models is not possible.

• Replace each epimorphism in a *κ*-chain by a jointly covering family of arrows of cardinality less than *κ*.

- Replace each epimorphism in a κ -chain by a jointly covering family of arrows of cardinality less than κ .
- The transfinite composites of these arrows should form themselves a jointly covering family

- Replace each epimorphism in a κ-chain by a jointly covering family of arrows of cardinality less than κ.
- The transfinite composites of these arrows should form themselves a jointly covering family

Definition

A κ -coherent category is a κ -complete coherent category with κ -complete subobject lattices where unions of cardinality less than κ are stable under pullback, and where the transfinite composites of jointly covering κ -families of morphisms form a jointly covering family.

κ -coherent logic

• For $\kappa\text{-regular categories, the exactness property corresponds to <math display="inline">DC_\gamma$ for each $\gamma<\kappa$

κ -coherent logic

- For $\kappa\text{-regular categories, the exactness property corresponds to <math display="inline">DC_\gamma$ for each $\gamma<\kappa$
- The corresponding axiom schema in the *κ*-coherent logic is the following "transfinite transitivity" rule:

κ -coherent logic

- For $\kappa\text{-regular categories, the exactness property corresponds to <math display="inline">DC_\gamma$ for each $\gamma<\kappa$
- The corresponding axiom schema in the *κ*-coherent logic is the following "transfinite transitivity" rule:

$$\frac{\phi_{i} \vdash_{\mathbf{y}_{i}} \bigvee_{j \in \gamma^{\beta+1}, j|_{\beta}=i} \exists \mathbf{x}_{j} \phi_{j} \quad \beta < \gamma, i \in \gamma^{\beta}}{\phi_{i} \dashv_{\mathbf{y}_{i}} \bigwedge_{\alpha < \beta} \phi_{i|_{\alpha}} \quad \beta < \gamma, \text{ limit } \beta, i \in \gamma^{\beta}} \frac{\phi_{i} \vdash_{\mathbf{y}_{i}} \bigwedge_{\alpha < \beta} \phi_{i|_{\alpha}}}{\phi_{\emptyset} \vdash_{\mathbf{y}_{\emptyset}} \bigvee_{f \in \gamma^{\gamma}} \exists_{\beta < \gamma} \mathbf{x}_{i|_{\beta+1}} \bigwedge_{\beta < \gamma} \phi_{i|_{\beta}}}}$$

for each cardinal $\gamma < \kappa$, where \mathbf{y}_i is the canonical context of ϕ_i , provided that, for every $i \in \gamma^{\beta+1}$, $FV(\phi_i) = FV(\phi_{i|_{\beta}}) \cup \mathbf{x}_i$ and $\mathbf{x}_{i|_{\beta+1}} \cap FV(\phi_{i|_{\beta}}) = \emptyset$ for any $\beta < \gamma$, as well as $FV(\phi_i) = \bigcup_{\alpha < \beta} FV(\phi_{i|_{\alpha}})$ for limit β . Note that we assume that there is a fixed well-ordering of γ^{γ}_{γ} for each $\gamma < \kappa$.

The transfinite transitivity rule embodies intuitionistically both the distributivity and the dependent choice axiom

The transfinite transitivity rule embodies intuitionistically both the distributivity and the dependent choice axiom

Theorem (E., 2016)

Let κ be an inaccessible cardinal. Then κ -coherent logic is sound and complete with respect to models in κ -coherent categories.

The transfinite transitivity rule embodies intuitionistically both the distributivity and the dependent choice axiom

Theorem (E., 2016)

Let κ be an inaccessible cardinal. Then κ -coherent logic is sound and complete with respect to models in κ -coherent categories.

We can also prove a completeness theorem with respect to sheaf models.

The transfinite transitivity rule embodies intuitionistically both the distributivity and the dependent choice axiom

Theorem (E., 2016)

Let κ be an inaccessible cardinal. Then κ -coherent logic is sound and complete with respect to models in κ -coherent categories.

We can also prove a completeness theorem with respect to sheaf models. Consider a κ -coherent category and equip it with the Grothendieck topology τ consisting of jointly covering families of cardinality less than κ . Then the topology is subcanonical and Yoneda embedding $\mathcal{C} \to Sh(\mathcal{C}, \tau)$ is a (conservative) κ -coherent functor.

The transfinite transitivity rule embodies intuitionistically both the distributivity and the dependent choice axiom

Theorem (E., 2016)

Let κ be an inaccessible cardinal. Then κ -coherent logic is sound and complete with respect to models in κ -coherent categories.

We can also prove a completeness theorem with respect to sheaf models. Consider a κ -coherent category and equip it with the Grothendieck topology τ consisting of jointly covering families of cardinality less than κ . Then the topology is subcanonical and Yoneda embedding $\mathcal{C} \to Sh(\mathcal{C}, \tau)$ is a (conservative) κ -coherent functor.

Moreover, we have, as expected:

Proposition

Let κ be an inaccessible cardinal. If C is κ -coherent, then $Sh(C, \tau)$ is κ -coherent.

• Completeness for sheaf models does not require weakly compact cardinals

- Completeness for sheaf models does not require weakly compact cardinals
- For Kripke (i.e., presheaf) models, the situation is different: a cofinal branch for a tree of height κ and levels of size less than κ is provided by B = {a : p ⊨ P_a}, where p is a node of a Kripke model of the theory of a branch.

- Completeness for sheaf models does not require weakly compact cardinals
- For Kripke (i.e., presheaf) models, the situation is different: a cofinal branch for a tree of height κ and levels of size less than κ is provided by B = {a : p ⊨ P_a}, where p is a node of a Kripke model of the theory of a branch.

So:

- Completeness for sheaf models does not require weakly compact cardinals
- For Kripke (i.e., presheaf) models, the situation is different: a cofinal branch for a tree of height κ and levels of size less than κ is provided by B = {a : p ⊨ P_a}, where p is a node of a Kripke model of the theory of a branch.

So:

• Weak compactness is needed for a completeness theorem with respect to $\kappa\text{-Kripke semantics}$

- Completeness for sheaf models does not require weakly compact cardinals
- For Kripke (i.e., presheaf) models, the situation is different: a cofinal branch for a tree of height κ and levels of size less than κ is provided by B = {a : p ⊨ P_a}, where p is a node of a Kripke model of the theory of a branch.

So:

- Weak compactness is needed for a completeness theorem with respect to $\kappa\text{-Kripke semantics}$
- Using a generalization of a theorem of Joyal, we can prove that weak compactness is also a sufficient condition.

Let C be a κ -coherent category and let Mod(C) be the category of κ -coherent Set-valued models of cardinality at most κ with κ -coherent homomorphisms.

Let C be a κ -coherent category and let Mod(C) be the category of κ -coherent Set-valued models of cardinality at most κ with κ -coherent homomorphisms. There is an evaluation functor:

 $ev: \mathcal{C}
ightarrow Set^{Mod(\mathcal{C})}$

Let C be a κ -coherent category and let Mod(C) be the category of κ -coherent Set-valued models of cardinality at most κ with κ -coherent homomorphisms. There is an evaluation functor:

ev :
$$\mathcal{C}
ightarrow {\it Set}^{\it Mod(\mathcal{C})}$$

It is clear that ev is κ -coherent.

Let C be a κ -coherent category and let Mod(C) be the category of κ -coherent Set-valued models of cardinality at most κ with κ -coherent homomorphisms. There is an evaluation functor:

ev :
$$\mathcal{C}
ightarrow {\it Set}^{\it Mod(\mathcal{C})}$$

It is clear that ev is κ -coherent. Moreover, we have:

Theorem (E., 2016)

Let κ be a weakly compact cardinal. If C is a κ -coherent, Heyting category of cardinality at most κ , then $ev : C \to Set^{Mod(C)}$ is a conservative, (κ -coherent) and Heyting functor.

the presheaf Set^{Mod(C)}, as a κ-coherent, Heyting category, provides a conservative κ-Kripke model for theories of cardinality at most κ.

- the presheaf Set^{Mod(C)}, as a κ-coherent, Heyting category, provides a conservative κ-Kripke model for theories of cardinality at most κ.
- e the conservativity of ev : C → Set^{Mod(C)} is a Set-valued completeness for κ-coherent theories of cardinality at most κ (this uses weak compactness).

- the presheaf Set^{Mod(C)}, as a κ-coherent, Heyting category, provides a conservative κ-Kripke model for theories of cardinality at most κ.
- the conservativity of ev : C → Set^{Mod(C)} is a Set-valued completeness for κ-coherent theories of cardinality at most κ (this uses weak compactness).
- if C is in addition a Boolean category, this is Karp's completeness theorem for κ -first-order classical theories of cardinality at most κ .

• Establish conceptual completeness theorems, or to what extent the category of κ -coherent models determines the κ -coherent theory (up to κ -pretopos completion)

- Establish conceptual completeness theorems, or to what extent the category of κ -coherent models determines the κ -coherent theory (up to κ -pretopos completion)
- Use strongly compact cardinals to remove the restriction on the cardinality of the theories

- Establish conceptual completeness theorems, or to what extent the category of κ -coherent models determines the κ -coherent theory (up to κ -pretopos completion)
- Use strongly compact cardinals to remove the restriction on the cardinality of the theories
- Study the case of finite-quantifier theories over $\mathcal{L}_{\kappa,\omega}$

- Establish conceptual completeness theorems, or to what extent the category of κ -coherent models determines the κ -coherent theory (up to κ -pretopos completion)
- Use strongly compact cardinals to remove the restriction on the cardinality of the theories
- Study the case of finite-quantifier theories over $\mathcal{L}_{\kappa,\omega}$
- Call κ a *Heyting cardinal* if κ -first-order theories of cardinality strictly less than κ are complete for κ -Kripke semantics. Determine its strength within the large cardinal hierarchy.

Thanks for your attention