Exact completion of path categories

Benno van den Berg ILLC, University of Amsterdam

PSSL 100, Cambridge, 21 May 2016

Preliminary remarks

• Contents based a joint paper with leke Moerdijk:

Exact completion of path categories and algebraic set theory. arXiv:1603.02456.

- Work described here was motivated by (homotopy) type theory, but I will not say much about the connection.
- Similar work has been done by Frey, Gran, Vitale, Rosolini and possibly others!

Traditional picture (Joyal, Carboni, ...)

For any cartesian category C there is an exact category $C_{ex/lex}$ together with an embedding $Y : C \to C_{ex/lex}$ such that composing with Y induces an equivalence

$$\mathsf{EX}(\mathcal{C}_{\mathsf{ex}/\mathsf{lex}},\mathcal{D}) \to \mathsf{CART}(\mathcal{C},\mathcal{D})$$

for any exact category \mathcal{D} .

The category $C_{ex/lex}$ can be constructed very concretely: its objects are pseudo-equivalence relations.

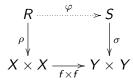
Definition

A *pseudo-equivalence relation* is an arrow $\rho = (\rho_1, \rho_2) : R \to X \times X$ for which there are

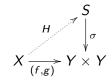
- **1** a map $k: X \to R$ such that $\rho k = \Delta_X$,
- 2) a map $I: R \to R$ such that $\rho_1 I = \rho_2$ and $\rho_2 I = \rho_1$, and
- **3** a map $m : R \times_X R \to R$ such that $\rho_1 m = \rho_1$ and $\rho_2 m = \rho_2$.

Traditional picture, continued

A morphism $(X, \rho : R \to X \times X)$ to $(Y, \sigma : S \to Y \times Y)$ in $\mathcal{C}_{ex/lex}$ is an equivalence class of arrows $f : X \to Y$ for which there are arrows $\varphi : R \to S$ such that



commutes. Two such maps $f, g : X \to Y$ are equivalent if there is an arrow $H : X \to S$ making



commute. The embedding $Y : \mathcal{C} \to \mathcal{C}_{e_X/le_X}$ is obtained by sending X to $(X, \Delta_X : X \to X \times X)$.

A theme in the theory of exact completions

Theorem

 $\mathcal{C}_{ex/lex} \text{ is exact and together with } Y : \mathcal{C} \to \mathcal{C}_{ex/lex} \text{ it is the exact completion of } \mathcal{C}.$

An important theme in the theory of exact completions is that it improves the properties of the original category. For example, we have:

Theorem (Carboni, Rosolini)

 $\mathcal{C}_{ex/lex}$ is locally cartesian closed if and only if $\mathcal C$ is weakly locally cartesian closed.

This is reminiscent of *setoids* in type theory. To bring this closer to (homotopy) type theory we introduce *path categories* (short for: *categories with path objects*).

Setting

We work in a category $\ensuremath{\mathcal{C}}$ with two classes of maps:

- fibrations
- weak equivalences

Terminology:

- A map which is both a fibration and a weak equivalence will be called an *acyclic fibration*.
- If we can factor the diagonal B → B × B as a weak equivalence
 r : B → PB followed by a fibration (s, t) : PB → B × B, then PB is a path object for B.

Category with path objects, or path category

Axioms

- $\begin{tabular}{ll} {\bf 0} & {\cal C} \mbox{ has a terminal object 1 and } X \to 1 \mbox{ is always a fibration}. \end{tabular}$
- Pibrations are closed under composition.
- The pullback of a fibration along any other map exists and is again a fibration.
- The pullback of an acyclic fibration along any other map is again an acyclic fibration.
- Weak equivalences satisfy 2-out-of-6.
- Isomorphisms are acyclic fibrations and every acyclic fibration has a section.
- \bigcirc Every object *B* has at least one path object.

(This is similar to Brown's notion of a *category of fibrant objects*, but strengthens it in two ways: we have 2-out-of-6 for weak equivalences instead of 2-out-of-3 and we demand that acyclic fibrations have sections.)

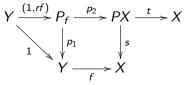
Examples

Examples

- The fibrant objects in a model category in which every object is cofibrant (simplicial sets, groupoids, topological spaces, ...).
- 2 The effective topos (Van Oosten).
- The syntactic category associated to Martin-Löf type theory (Avigad-Kapulkin-Lumsdaine).
- The syntactic category remains an example even when the computation rule for J only holds propositionally (BvdB: see arXiv:1604.06001).
- Any category with finite limits (all maps fibrations, only isomorphisms are weak equivalences).

First basic facts about path categories

• Every map $f : Y \to X$ factors as a weak equivalence followed by a fibration:



• This means that if $f: Y \to X$ is a fibration, then we can factor $Y \to Y \times_X Y$ as

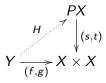
$$Y \longrightarrow P_X(Y) \longrightarrow Y \times_X Y,$$

where the first is a weak equivalence and the second a fibration.

 Corollary: Let C(X) be the full subcategory of C/X whose objects are fibrations. Then C(X) is again a path category.

Homotopy in a path category

If $f, g: Y \to X$ are two parallel maps, then we say that f and g are *homotopic* and write $f \simeq g$ if there is a map $H: Y \to PX$ making



commute.

Theorem

The homotopy relation \simeq is a congruence on C.

The quotient is the *homotopy category* of C. A map which becomes an isomorphism in the homotopy category is called a *homotopy equivalence*.

Theorem

The weak equivalences and homotopy equivalences coincide in a path category.

A useful property

A useful property of path categories is the following:

Proposition

Suppose p is a fibration fitting into a triangle

which commutes up to homotopy. Then there is a map $f': Z \to Y$, homotopic to f, such that for f' the triangle commutes strictly with pf' = g.

Homotopy equivalence relations

How do we modify the exact completion for path categories?

Homotopy equivalence relaton

A fibration $\rho = (\rho_1, \rho_2) : R \to X \times X$ is a homotopy equivalence relation if there are

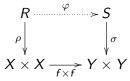
- **1** a map $k: X \to R$ such that $\rho k = \Delta_X$,
- 2) a map $I: R \to R$ such that $\rho_1 I = \rho_2$ and $\rho_2 I = \rho_1$, and
- **3** a map $m : R \times_X R \to R$ such that $\rho_1 m = \rho_1$ and $\rho_2 m = \rho_2$.

Proposition

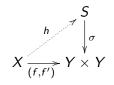
If PX is a path object on X, then $(s, t) : PX \to X \times X$ is a homotopy equivalence relation on X. Indeed, it is the "smallest" such.

Morphisms

We will organise the homotopy equivalence relations into a category. So, if $(X, \rho : R \to X \times X)$ and $(Y, \sigma : S \to Y \times Y)$ are two homotopy equivalence relations, then a morphism $f : (X, R) \to (Y, S)$ is an equivalence class of maps $f : X \to Y$ for which there is a "tracking" φ making



commute. We will regard two such maps $f, f' : X \to Y$ as equivalent if there is a map $H : X \to S$ making



commute.

Homotopy exact completion

This results in a category which we will call the *homotopy exact* completion of C and denote by Hex(C). Note that there is again a functor $Y : C \to \text{Hex}(C)$, this time obtained by sending X to (X, PX).

Theorem

 $\operatorname{Hex}(\mathcal{C})$ is exact.

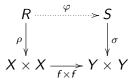
Interesting (and useful!) fact:

Theorem

 $\operatorname{Hex}(\mathcal{C})$ is the homotopy category of a path category $\operatorname{Ex}(\mathcal{C})$.

Exact completion for path categories

The objects of $\text{Ex}(\mathcal{C})$ are the same as those of $\text{Hex}(\mathcal{C})$, that is, homotopy equivalence relations. Morphisms $f : (X, R) \to (Y, S)$ are maps $f : X \to Y$ for which there is a "tracking" φ making



commute. Define:

- $f \sim f'$ for two such maps if there exists $H : X \rightarrow S$ such that $(f, f') = \sigma H$.
- Such a map f is a weak equivalence if there is a morphism $g: (Y, S) \rightarrow (X, R)$ such that $fg \sim 1$ and $gf \sim 1$.
- Such a map f is a fibration if f : X → Y is a fibration in C and there is a map L : X ×_Y S → R such that ρ₁L = p₁ and fρ₂L = σ₂p₂.

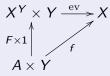
Homotopy exponentials

Theorem

The category Ex(C) is a fibration category whose homotopy relation is given by \sim . Therefore its homotopy category is precisely Hex(C).

Homotopy exponentials

Suppose X and Y are two objects in a path category C. A homotopy exponential is an object X^Y together with a map $ev : X^Y \times Y \to X$ such that for any map $f : A \times Y \to X$ there is a map $F : A \to X^Y$, unique up to homotopy, such that



commutes up to homotopy. If we drop the requirement that F is unique up to homotopy, then we call X^{Y} a *weak homotopy exponential*.

Homotopy Π-types

Homotopy exponentials

Suppose $f: X \to J$ and $\alpha: J \to I$ are two fibrations. A homotopy Π -type of f along α is a fibration $\Pi_{\alpha}(f) \to I$ together with a map ev: $\alpha^*\Pi_{\alpha}(f) \to f$ in $\mathcal{C}(J)$, such that: for any map $g: Y \to I$ and $s: \alpha^*Y \to X$ over J there is a map $S: Y \to \Pi_{\alpha}(X)$ over I and unique up to fibrewise homotopy over I, such that $s \simeq_J \text{ev} \circ \alpha^*S$. If we drop the requirement that S is unique up to fibrewise homotopy, then we call $\Pi_{\alpha}(f)$ a weak homotopy Π -type.

Sample theorem

If C is a path category with weak homotopy Π -types, then Ex(C) has homotopy Π -types and Hex(C) is locally cartesian closed.

Interesting directions

- Effective topos as the homotopy category of a path category?
- Is there also a homotopy regular completion?
- What are Hex(Top) and Ex(Top)? Is there a homotopic version of Scott's equilogical spaces?