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Preliminary remarks

Contents based a joint paper with Ieke Moerdijk:

Exact completion of path categories and algebraic set theory.
arXiv:1603.02456.

Work described here was motivated by (homotopy) type theory, but I
will not say much about the connection.

Similar work has been done by Frey, Gran, Vitale, Rosolini and
possibly others!
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Traditional picture (Joyal, Carboni, . . . )

For any cartesian category C there is an exact category Cex/lex together
with an embedding Y : C → Cex/lex such that composing with Y induces
an equivalence

EX(Cex/lex ,D)→ CART(C,D)

for any exact category D.

The category Cex/lex can be constructed very concretely: its objects are
pseudo-equivalence relations.

Definition

A pseudo-equivalence relation is an arrow ρ = (ρ1, ρ2) : R → X × X for
which there are

1 a map k : X → R such that ρk = ∆X ,

2 a map l : R → R such that ρ1l = ρ2 and ρ2l = ρ1, and

3 a map m : R ×X R → R such that ρ1m = ρ1 and ρ2m = ρ2.
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Traditional picture, continued
A morphism (X , ρ : R → X × X ) to (Y , σ : S → Y × Y ) in Cex/lex is an
equivalence class of arrows f : X → Y for which there are arrows
ϕ : R → S such that

R
ϕ //

ρ

��

S

σ
��

X × X
f×f
// Y × Y

commutes. Two such maps f , g : X → Y are equivalent if there is an
arrow H : X → S making

S

σ
��

X
(f ,g)

//

H

;;

Y × Y

commute. The embedding Y : C → Cex/lex is obtained by sending X to
(X ,∆X : X → X × X ).
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A theme in the theory of exact completions

Theorem

Cex/lex is exact and together with Y : C → Cex/lex it is the exact
completion of C.

An important theme in the theory of exact completions is that it improves
the properties of the original category. For example, we have:

Theorem (Carboni, Rosolini)

Cex/lex is locally cartesian closed if and only if C is weakly locally cartesian
closed.

This is reminiscent of setoids in type theory. To bring this closer to
(homotopy) type theory we introduce path categories (short for: categories
with path objects).
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Setting

We work in a category C with two classes of maps:

fibrations

weak equivalences

Terminology:

A map which is both a fibration and a weak equivalence will be called
an acyclic fibration.

If we can factor the diagonal B → B × B as a weak equivalence
r : B → PB followed by a fibration (s, t) : PB → B ×B, then PB is a
path object for B.
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Category with path objects, or path category

Axioms
1 C has a terminal object 1 and X → 1 is always a fibration.

2 Fibrations are closed under composition.

3 The pullback of a fibration along any other map exists and is again a
fibration.

4 The pullback of an acyclic fibration along any other map is again an
acyclic fibration.

5 Weak equivalences satisfy 2-out-of-6.

6 Isomorphisms are acyclic fibrations and every acyclic fibration has a
section.

7 Every object B has at least one path object.

(This is similar to Brown’s notion of a category of fibrant objects, but
strengthens it in two ways: we have 2-out-of-6 for weak equivalences
instead of 2-out-of-3 and we demand that acyclic fibrations have sections.)
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Examples

Examples

1 The fibrant objects in a model category in which every object is
cofibrant (simplicial sets, groupoids, topological spaces, . . . ).

2 The effective topos (Van Oosten).

3 The syntactic category associated to Martin-Löf type theory
(Avigad-Kapulkin-Lumsdaine).

4 The syntactic category remains an example even when the
computation rule for J only holds propositionally (BvdB: see
arXiv:1604.06001).

5 Any category with finite limits (all maps fibrations, only isomorphisms
are weak equivalences).
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First basic facts about path categories

Every map f : Y → X factors as a weak equivalence followed by a
fibration:

Y
(1,rf ) //

1   

Pf
p2 //

p1
��

PX

s
��

t // X

Y
f
// X

This means that if f : Y → X is a fibration, then we can factor
Y → Y ×X Y as

Y // PX (Y ) // Y ×X Y ,

where the first is a weak equivalence and the second a fibration.

Corollary: Let C(X ) be the full subcategory of C/X whose objects are
fibrations. Then C(X ) is again a path category.
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Homotopy in a path category
If f , g : Y → X are two parallel maps, then we say that f and g are
homotopic and write f ' g if there is a map H : Y → PX making

PX

(s,t)
��

Y
(f ,g)

//

H

;;

X × X

commute.

Theorem

The homotopy relation ' is a congruence on C.

The quotient is the homotopy category of C. A map which becomes an
isomorphism in the homotopy category is called a homotopy equivalence.

Theorem

The weak equivalences and homotopy equivalences coincide in a path
category.
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A useful property

A useful property of path categories is the following:

Proposition

Suppose p is a fibration fitting into a triangle

Y

p
��

Z

f
??

g
// X

which commutes up to homotopy. Then there is a map f ′ : Z → Y ,
homotopic to f , such that for f ′ the triangle commutes strictly with
pf ′ = g .
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Homotopy equivalence relations

How do we modify the exact completion for path categories?

Homotopy equivalence relaton

A fibration ρ = (ρ1, ρ2) : R → X × X is a homotopy equivalence relation if
there are

1 a map k : X → R such that ρk = ∆X ,

2 a map l : R → R such that ρ1l = ρ2 and ρ2l = ρ1, and

3 a map m : R ×X R → R such that ρ1m = ρ1 and ρ2m = ρ2.

Proposition

If PX is a path object on X , then (s, t) : PX → X × X is a homotopy
equivalence relation on X . Indeed, it is the “smallest” such.
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Morphisms
We will organise the homotopy equivalence relations into a category. So, if
(X , ρ : R → X × X ) and (Y , σ : S → Y × Y ) are two homotopy
equivalence relations, then a morphism f : (X ,R)→ (Y , S) is an
equivalence class of maps f : X → Y for which there is a “tracking” ϕ
making

R
ϕ //

ρ

��

S

σ
��

X × X
f×f
// Y × Y

commute. We will regard two such maps f , f ′ : X → Y as equivalent if
there is a map H : X → S making

S

σ
��

X
(f ,f ′)

//

h

;;

Y × Y

commute.
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Homotopy exact completion

This results in a category which we will call the homotopy exact
completion of C and denote by Hex(C). Note that there is again a functor
Y : C → Hex(C), this time obtained by sending X to (X ,PX ).

Theorem

Hex(C) is exact.

Interesting (and useful!) fact:

Theorem

Hex(C) is the homotopy category of a path category Ex(C).
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Exact completion for path categories
The objects of Ex(C) are the same as those of Hex(C), that is, homotopy
equivalence relations. Morphisms f : (X ,R)→ (Y , S) are maps
f : X → Y for which there is a “tracking” ϕ making

R
ϕ //

ρ

��

S

σ
��

X × X
f×f
// Y × Y

commute. Define:

f ∼ f ′ for two such maps if there exists H : X → S such that
(f , f ′) = σH.

Such a map f is a weak equivalence if there is a morphism
g : (Y ,S)→ (X ,R) such that fg ∼ 1 and gf ∼ 1.

Such a map f is a fibration if f : X → Y is a fibration in C and there
is a map L : X ×Y S → R such that ρ1L = p1 and f ρ2L = σ2p2.
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Homotopy exponentials

Theorem

The category Ex(C) is a fibration category whose homotopy relation is
given by ∼. Therefore its homotopy category is precisely Hex(C).

Homotopy exponentials

Suppose X and Y are two objects in a path category C. A homotopy
exponential is an object XY together with a map ev : XY × Y → X such
that for any map f : A× Y → X there is a map F : A→ XY , unique up
to homotopy, such that

XY × Y
ev // X

A× Y

f

;;

F×1

OO

commutes up to homotopy. If we drop the requirement that F is unique
up to homotopy, then we call XY a weak homotopy exponential.
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Homotopy Π-types

Homotopy exponentials

Suppose f : X → J and α : J → I are two fibrations. A homotopy Π-type
of f along α is a fibration Πα(f )→ I together with a map
ev : α∗Πα(f )→ f in C(J), such that: for any map g : Y → I and
s : α∗Y → X over J there is a map S : Y → Πα(X ) over I and unique up
to fibrewise homotopy over I , such that s 'J ev ◦ α∗S . If we drop the
requirement that S is unique up to fibrewise homotopy, then we call Πα(f )
a weak homotopy Π-type.

Sample theorem

If C is a path category with weak homotopy Π-types, then Ex(C) has
homotopy Π-types and Hex(C) is locally cartesian closed.
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Interesting directions

Effective topos as the homotopy category of a path category?

Is there also a homotopy regular completion?

What are Hex(Top) and Ex(Top)? Is there a homotopic version of
Scott’s equilogical spaces?
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